• Title/Summary/Keyword: generalized morphic ring

Search Result 2, Processing Time 0.013 seconds

WHEN IS C(X) AN EM-RING?

  • Abuosba, Emad;Atassi, Isaaf
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.17-29
    • /
    • 2022
  • A commutative ring with unity R is called an EM-ring if for any finitely generated ideal I there exist a in R and a finitely generated ideal J with Ann(J) = 0 and I = aJ. In this article it is proved that C(X) is an EM-ring if and only if for each U ∈ Coz (X), and each g ∈ C* (U) there is V ∈ Coz (X) such that U ⊆ V, ${\bar{V}}=X$, and g is continuously extendable on V. Such a space is called an EM-space. It is shown that EM-spaces include a large class of spaces as F-spaces and cozero complemented spaces. It is proved among other results that X is an EM-space if and only if the Stone-Čech compactification of X is.

ANNIHILATING CONTENT IN POLYNOMIAL AND POWER SERIES RINGS

  • Abuosba, Emad;Ghanem, Manal
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1403-1418
    • /
    • 2019
  • Let R be a commutative ring with unity. If f(x) is a zero-divisor polynomial such that $f(x)=c_f f_1(x)$ with $c_f{\in}R$ and $f_1(x)$ is not zero-divisor, then $c_f$ is called an annihilating content for f(x). In this case $Ann(f)=Ann(c_f )$. We defined EM-rings to be rings with every zero-divisor polynomial having annihilating content. We showed that the class of EM-rings includes integral domains, principal ideal rings, and PP-rings, while it is included in Armendariz rings, and rings having a.c. condition. Some properties of EM-rings are studied and the zero-divisor graphs ${\Gamma}(R)$ and ${\Gamma}(R[x])$ are related if R was an EM-ring. Some properties of annihilating contents for polynomials are extended to formal power series rings.