• Title/Summary/Keyword: generalized hypergeometric series $_3F_2$

Search Result 37, Processing Time 0.021 seconds

CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION

  • Kim, Yongsup
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.523-532
    • /
    • 2019
  • Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi et al. [2, 3]. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized k-Bessel functions. Also, we consider some integral formulas of the (p, q)-extended Bessel functions $J_{{\nu},p,q}(z)$ and the Delerue hyper-Bessel function which are proved in terms of (p, q)-extended generalized hypergeometric functions, and the generalized Wright hypergeometric functions, respectively.

A NOTE ON CERTAIN LAPLACE TRANSFORMS FOR THE GENERALIZED HYPERGEOMETRIC FUNCTION 3F3

  • Kim, Insuk;Jun, Sungtae
    • The Pure and Applied Mathematics
    • /
    • v.25 no.1
    • /
    • pp.7-16
    • /
    • 2018
  • The main objective of this paper is to demonstrate how one can obtain very quickly so far unknown Laplace transforms of rather general cases of the generalized hypergeometric function $_3F_3$ by employing generalizations of classical summation theorems for the series $_3F_2$ available in the literature. Several new as well known results obtained earlier by Kim et al. follow special cases of main findings.

A NEW PROOF OF THE EXTENDED SAALSCHÜTZ'S SUMMATION THEOREM FOR THE SERIES 4F3 AND ITS APPLICATIONS

  • Choi, Junesang;Rathie, Arjun K.;Chopra, Purnima
    • Honam Mathematical Journal
    • /
    • v.35 no.3
    • /
    • pp.407-415
    • /
    • 2013
  • Very recently, Rakha and Rathie obtained an extension of the classical Saalsch$\ddot{u}$tz's summation theorem. Here, in this paper, we first give an elementary proof of the extended Saalsch$\ddot{u}$tz's summation theorem. By employing it, we next present certain extenstions of Ramanujan's result and another result involving hypergeometric series. The results presented in this paper are simple, interesting and (potentially) useful.

ON PREECE'S IDENTITY AND OTHER CONTIGUOUS RESULTS

  • CHOI, JUNE-SANG;RATHIE ARJUN K.;BHOJAK BHARTI
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.169-178
    • /
    • 2005
  • Five results closely related to the well-known Preece's identity obtained earlier by Choi and Rathie will be derived here by using some known hypergeometric identities. In addition to this, the identities obtained earlier by Choi and Rathie have also been written in a compact form.

q-EXTENSION OF A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN THREE VARIABLES

  • Choi, June-Sang
    • Honam Mathematical Journal
    • /
    • v.34 no.3
    • /
    • pp.327-340
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. Very recently, Choi defined a $q$-extension of the generalized two variable Gottlieb polynomials ${\varphi}^2_n({\cdot})$ and presented their several generating functions. Also, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in m variables to give two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, in the sequel of the above results for their possible general $q$-extensions in several variables, again, we aim at trying to define a $q$-extension of the generalized three variable Gottlieb polynomials ${\varphi}^3_n({\cdot})$ and present their several generating functions.

A SUMMATION FORMULA OF 6F5(1)

  • Choi, June-Sang;Arjun K.;Shaloo Malani
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.775-778
    • /
    • 2004
  • The authors aim at obtaining an interesting result for a special summation formula for $_{6F_5}$(1), by comparing two generalized Watson's theorems on the sum of a $_{3F_2}$ obtained earlier by Mitra and Lavoie et. al.

GENERALIZATIONS OF CERTAIN SUMMATION FORMULA DUE TO RAMANUJAN

  • Song, Hyeong-Kee;Kim, Yong-Sup
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • Motivated by the extension of classical Dixon's summation theorem for the series $_3F_2$ given by Lavoie, Grondin, Rathie and Arora, the authors aim at deriving four generalized summation formulas, which, upon specializing their parameters, give many summation identities including, especially, the four very interesting summation formulas due to Ramanujan.

ON A NEW CLASS OF SERIES IDENTITIES

  • SHEKHAWAT, NIDHI;CHOI, JUNESANG;RATHIE, ARJUN K.;PRAKASH, OM
    • Honam Mathematical Journal
    • /
    • v.37 no.3
    • /
    • pp.339-352
    • /
    • 2015
  • We aim at giving explicit expressions of $${\sum_{m,n=0}^{{\infty}}}{\frac{{\Delta}_{m+n}(-1)^nx^{m+n}}{({\rho})_m({\rho}+i)_nm!n!}$$, where i = 0, ${\pm}1$, ${\ldots}$, ${\pm}9$ and $\{{\Delta}_n\}$ is a bounded sequence of complex numbers. The main result is derived with the help of the generalized Kummer's summation theorem for the series $_2F_1$ obtained earlier by Choi. Further some special cases of the main result considered here are shown to include the results obtained earlier by Kim and Rathie and the identity due to Bailey.

CERTAIN IDENTITIES ASSOCIATED WITH GENERALIZED HYPERGEOMETRIC SERIES AND BINOMIAL COEFFICIENTS

  • Lee, Keum-Sik;Cho, Young-Joon;Choi, June-Sang
    • The Pure and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.127-135
    • /
    • 2001
  • The main object of this paper is to present a transformation formula for a finite series involving $_3F_2$ and some identities associated with the binomial coefficients by making use of the theory of Legendre polynomials $P_{n}$(x) and some summation theorems for hypergeometric functions $_pF_q$. Some integral formulas are also considered.

  • PDF