• Title/Summary/Keyword: generalized harmonic numbers

Search Result 16, Processing Time 0.02 seconds

NOTES ON FORMAL MANIPULATIONS OF DOUBLE SERIES

  • Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.781-789
    • /
    • 2003
  • Formal manipulations of double series are useful in getting some other identities from given ones and evaluating certain summations, involving double series. The main object of this note is to summarize rather useful double series manipulations scattered in the literature and give their generalized formulas, for convenience and easier reference in their future use. An application of such manipulations to an evaluation for Euler sums (in itself, interesting), among other things, will also be presented to show usefulness of such manipulative techniques.

PARAMETRIC EULER SUMS OF HARMONIC NUMBERS

  • Junjie Quan;Xiyu Wang;Xiaoxue Wei;Ce Xu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.1033-1051
    • /
    • 2024
  • In this paper, we define a parametric variant of generalized Euler sums and construct contour integration to give some explicit evaluations of these parametric Euler sums. In particular, we establish several explicit formulas of (Hurwitz) zeta functions, linear and quadratic parametric Euler sums. Furthermore, we also give an explicit evaluation of alternating double zeta values ${\zeta}({\bar{2j}};\,2m+1)$ in terms of a combination of alternating Riemann zeta values by using the parametric Euler sums.

EULER SUMS EVALUATABLE FROM INTEGRALS

  • Jung, Myung-Ho;Cho, Young-Joon;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.545-555
    • /
    • 2004
  • Ever since the time of Euler, the so-called Euler sums have been evaluated in many different ways. We give here a proof of the classical Euler sum by following Lewin's method. We also consider some related formulas involving Euler sums, which are evaluatable from some known definite integrals.

NOTES ON SOME IDENTITIES INVOLVING THE RIEMANN ZETA FUNCTION

  • Lee, Hye-Rim;Ok, Bo-Myoung;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.165-173
    • /
    • 2002
  • We first review Ramaswami's find Apostol's identities involving the Zeta function in a rather detailed manner. We then present corrected, or generalized formulas, or a different method of proof for some of them. We also give closed-form evaluation of some series involving the Riemann Zeta function by an integral representation of ζ(s) and Apostol's identities given here.

SEVERAL RESULTS ASSOCIATED WITH THE RIEMANN ZETA FUNCTION

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.467-480
    • /
    • 2009
  • In 1859, Bernhard Riemann, in his epoch-making memoir, extended the Euler zeta function $\zeta$(s) (s > 1; $s{\in}\mathbb{R}$) to the Riemann zeta function $\zeta$(s) ($\Re$(s) > 1; $s{\in}\mathbb{C}$) to investigate the pattern of the primes. Sine the time of Euler and then Riemann, the Riemann zeta function $\zeta$(s) has involved and appeared in a variety of mathematical research subjects as well as the function itself has been being broadly and deeply researched. Among those things, we choose to make a further investigation of the following subjects: Evaluation of $\zeta$(2k) ($k {\in}\mathbb{N}$); Approximate functional equations for $\zeta$(s); Series involving the Riemann zeta function.

  • PDF

ON CONGRUENCES WITH THE TERMS OF THE SECOND ORDER SEQUENCES {Ukn} AND {Vkn}

  • KOPARAL, SIBEL;OMUR, Nese
    • Honam Mathematical Journal
    • /
    • v.40 no.3
    • /
    • pp.549-559
    • /
    • 2018
  • In this paper, we consider the congruences involving harmonic numbers and the terms of the sequences {$U_{kn}$} and {$V_{kn}$}. For example, for an odd prime number p, $${\sum\limits_{i=1}^{p-1}}H_i{\frac{U_{k(i+m)}}{V^i_k}}{\equiv}{\frac{(-1)^kU_{k(m+1)}}{_pV^{p-1}_k}}(V^p_k-V_{kp})(mod\;p)$$, where $m{\in}{\mathbb{Z}}$ and $k{\in}{\mathbb{Z}}$ with $p{\nmid}V_k$.