• 제목/요약/키워드: generalized Lindley distribution

검색결과 5건 처리시간 0.019초

A Comparison of Size and Power of Tests of Hypotheses on Parameters Based on Two Generalized Lindley Distributions

  • Okwuokenye, Macaulay;Peace, Karl E.
    • Communications for Statistical Applications and Methods
    • /
    • 제22권3호
    • /
    • pp.233-239
    • /
    • 2015
  • This study compares two generalized Lindley distributions and assesses consistency between theoretical and analytical results. Data (complete and censored) assumed to follow the Lindley distribution are generated and analyzed using two generalized Lindley distributions, and maximum likelihood estimates of parameters from the generalized distributions are obtained. Size and power of tests of hypotheses on the parameters are assessed drawing on asymptotic properties of the maximum likelihood estimates. Results suggest that whereas size of some of the tests of hypotheses based on the considered generalized distributions are essentially ${\alpha}$-level, some are possibly not; power of tests of hypotheses on the Lindley distribution parameter from the two distributions differs.

An approach to improving the Lindley estimator

  • Park, Tae-Ryoung;Baek, Hoh-Yoo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권6호
    • /
    • pp.1251-1256
    • /
    • 2011
  • Consider a p-variate ($p{\geq}4$) normal distribution with mean ${\theta}$ and identity covariance matrix. Using a simple property of noncentral chi square distribution, the generalized Bayes estimators dominating the Lindley estimator under quadratic loss are given based on the methods of Brown, Brewster and Zidek for estimating a normal variance. This result can be extended the cases where covariance matrix is completely unknown or ${\Sigma}={\sigma}^2I$ for an unknown scalar ${\sigma}^2$.

GENERALIZED LINDLEY DISTRIBUTION USING PROPORTIONAL HAZARD FAMILY AND INFERENCE OF FAILURE TIME DATA

  • Ahmed AL-Adilee;Hawraa A. AL-Challabi;Hassanein Falah;Dalael Saad Abdul-Zahra
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권3호
    • /
    • pp.793-800
    • /
    • 2023
  • In this paper, we propose a generalization of Lindley distribution (GLD) via a special structure that is concern with progressively Type-II right censoring and time failure data. We study the modern properties that we have built by such combination, for example, survival function, hazard function, moments, and estimation by non-Bayesian methods. Application on some selected data related to Lindley distribution (LD) and (ED) have been employed to find out the best distribution that can fit data comparing with the GLD.

Bayesian and maximum likelihood estimation of entropy of the inverse Weibull distribution under generalized type I progressive hybrid censoring

  • Lee, Kyeongjun
    • Communications for Statistical Applications and Methods
    • /
    • 제27권4호
    • /
    • pp.469-486
    • /
    • 2020
  • Entropy is an important term in statistical mechanics that was originally defined in the second law of thermodynamics. In this paper, we consider the maximum likelihood estimation (MLE), maximum product spacings estimation (MPSE) and Bayesian estimation of the entropy of an inverse Weibull distribution (InW) under a generalized type I progressive hybrid censoring scheme (GePH). The MLE and MPSE of the entropy cannot be obtained in closed form; therefore, we propose using the Newton-Raphson algorithm to solve it. Further, the Bayesian estimators for the entropy of InW based on squared error loss function (SqL), precautionary loss function (PrL), general entropy loss function (GeL) and linex loss function (LiL) are derived. In addition, we derive the Lindley's approximate method (LiA) of the Bayesian estimates. Monte Carlo simulations are conducted to compare the results among MLE, MPSE, and Bayesian estimators. A real data set based on the GePH is also analyzed for illustrative purposes.

A Study on the Posterior Density under the Bayes-empirical Bayes Models

  • Sohn, Joong-K.Sohn;Kim, Heon-Joo-Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제3권3호
    • /
    • pp.215-223
    • /
    • 1996
  • By using Tukey's generalized lambda distribution, appoximate posterior density is derived under the Bayes-empirical Bayes model. The sensitivity of posterior distribution to the hyperprior distribution is examined by using Tukey's generalized lambda distriburion which approximate many well-knmown distributions. Based upon Monte Varlo simulation studies it can be said that posterior distribution is sensitive to the cariance of the prior distribution and to the symmetry of the hyperprior distribution. Also posterior distribution is approximately obtained by using the following methods : Lindley method, Laplace method and Gibbs sampler method.

  • PDF