• 제목/요약/키워드: general strain theory

검색결과 73건 처리시간 0.025초

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • 제14권2호
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.

잠재성장모형을 사용한 청소년의 학업긴장이 불행감과 휴대전화 의존에 미치는 종단적·복합적 영향 분석 (Longitudinal and Complex Influence of Academic Strain on Unhappiness and Mobile Phone Dependency among Adolescents using Latent Growth Model)

  • 전상민
    • 디지털융복합연구
    • /
    • 제14권12호
    • /
    • pp.293-302
    • /
    • 2016
  • 본 연구는 시간이 경과함에 따라 청소년의 학업긴장과 불행감, 휴대전화 의존이 어떠한 변화 추이를 가지고, 학업긴장의 변화가 불행감과 휴대전화 의존의 변화에 어떠한 종단적 복합적 영향을 파악하여 이들 간의 악순환을 방지하는 방안 모색을 목적으로 한다. 이를 위하여 일반긴장이론을 개념적 연구틀로 설정하고, 한국청소년정책연구원의 제 2~4차 한국아동 청소년패널 1,589명의 청소년 응답치를 사용하여 잠재성장모형 분석을 수행하였다. 분석결과, 청소년의 학업긴장과 불행감, 휴대전화 의존은 모두 시간의 경과에 따라 지속적으로 증가하였다. 학업긴장의 초기값은 불행감의 초기값 및 휴대전화 의존의 초기값과 변화율에는 정적 영향을 미쳤고, 학업긴장의 변화율은 불행감의 변화율에 정적 영향을 미쳤다. 불행감의 변화율은 휴대전화 의존 변화율에 정적 영향을 미쳤다. 또한, 학업긴장의 변화율이 불행감의 변화율을 매개로 하여 휴대전화 의존의 변화율에 정적 영향을 미치는 것으로 나타났다. 이상의 연구결과를 바탕으로 본 연구는 청소년의 학습과 부정적 정서, 휴대전화 의존에 대한 유용한 시사점을 제공하였고, 상기 변수들의 변화의 근거에 대한 후속 연구를 제안하였다.

일반긴장이론(GST)을 이용한 중학생의 휴대폰 의존에 미치는 영향 (General Strain Theory approach to the Use of Cellular Phone Dependence of Middle School Students)

  • 심현진;이일현;이현실
    • 한국콘텐츠학회논문지
    • /
    • 제14권2호
    • /
    • pp.355-363
    • /
    • 2014
  • 본 연구는 Agnew의 GST에 기반하여 중학생의 휴대폰 의존에 미치는 영향을 알아보려 하였다. 연구대상은 한국아동청소년패널 2010 중1 패널 1차년도 데이터를 이용하여 총 2,151명을 최종 연구에 이용되었다. 연구의 분석방법은 AMOS 21 Ver.를 사용하여 구조방정식으로 검증하였다. 본 연구의 결과는 다음과 같다. 첫째, 최종모형의 적합도 지수는 $X^2=1398.997$, df=144, GFI=.937, NNFI(TLI)=.902, CFI=.918, RMSEA=.061으로 나타나 GST이론을 통해 중학생의 휴대폰 의존에 대해 검증하는데 타당한 것으로 나타났다. 둘째, 중학생의 긴장요인이 부정적 삶의 만족도를 형성하는데 통계학적으로 유의한 정(+)의 영향을 나타내는 것으로 나타났다. 마지막으로, 중학생의 부정적 삶의 만족도는 휴대폰 의존에 통계학적으로 유의한 정(+)의 영향을 미치는 것으로 나타났다. 본 연구는 중학생의 휴대폰 의존에 관한 프로그램 개발, 중재적 방안을 모색하는데 기초적 자료로 제공하려 한다.

멱함수 가공경화 모델을 이용한 복합실린더의 자긴가공해석 (Autofrettage Analysis of Compound Cylinder with Power Function Strain Hardening Model)

  • 박재현;이영신;심우성;김재훈;차기업;홍석균
    • 대한기계학회논문집A
    • /
    • 제32권6호
    • /
    • pp.488-495
    • /
    • 2008
  • In order to achieve long fatigue lifetimes for cyclically pressurized thick cylinders, multi-layered compound cylinder has been proposed. Such compound cylinder involves a shrink-fit procedure incorporating a monobloc tube which has previously undergone autofrettage. The basic autofrettage theory assumes elastic-perfectly plastic behaviour. Because of the Bauschinger effect and strain-hardening, most materials do not display elastic-perfectly plastic properties and consequently various autofrettage mo dels are based on different simplified material strain-hardening models, which is assumed that combination of linear strain-hardenig and power strain-hardening model. This approach gives a more accurate prediction than the elastic-perfectly plastic model and is suitable for different strain-hardening materials. In this paper, a general autofrettage model that incorporates the material strain-hardening relationship and the Bauschinger effect, based upon the actual tensile-compressive stress-strain curve of a material was proposed. The model was obtained using the von Mises yield criterion and plane strain condition. The tensile-compressive stress-strain curve was obtained by experiment. The parameters needed in the model were determined by fitting the actual tensile-compressive curve of the material. Finally, strain- hardening model was compared with elastic-perfectly plastic model.

Instability of (Heterogeneous) Euler beam: Deterministic vs. stochastic reduced model approach

  • Ibrahimbegovic, Adnan;Mejia-Nava, Rosa Adela;Hajdo, Emina;Limnios, Nikolaos
    • Coupled systems mechanics
    • /
    • 제11권2호
    • /
    • pp.167-198
    • /
    • 2022
  • In this paper we deal with classical instability problems of heterogeneous Euler beam under conservative loading. It is chosen as the model problem to systematically present several possible solution methods from simplest deterministic to more complex stochastic approach, both of which that can handle more complex engineering problems. We first present classical analytic solution along with rigorous definition of the classical Euler buckling problem starting from homogeneous beam with either simplified linearized theory or the most general geometrically exact beam theory. We then present the numerical solution to this problem by using reduced model constructed by discrete approximation based upon the weak form of the instability problem featuring von Karman (virtual) strain combined with the finite element method. We explain how such numerical approach can easily be adapted to solving instability problems much more complex than classical Euler's beam and in particular for heterogeneous beam, where analytic solution is not readily available. We finally present the stochastic approach making use of the Duffing oscillator, as the corresponding reduced model for heterogeneous Euler's beam within the dynamics framework. We show that such an approach allows computing probability density function quantifying all possible solutions to this instability problem. We conclude that increased computational cost of the stochastic framework is more than compensated by its ability to take into account beam material heterogeneities described in terms of fast oscillating stochastic process, which is typical of time evolution of internal variables describing plasticity and damage.

유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측 (Forming Limit Prediction in Tube Hydroforming Processes by Using the FEM and FLSD)

  • 김상우;김정;이정환;강범수
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.527-532
    • /
    • 2005
  • Among the failure modes which can occur in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram (FLD) has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, The application of FLD to hydroforming process, where strain path is no longer linear throughout forming process, may lead to misunderstanding for fracture initiation. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out the state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified by a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the forming severity in hydroforming processes.

유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측 (Forming Limit Prediction in Tube Hydroforming Processes by using the FEM and ELSD)

  • 김상우;김정;이정환;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.92-96
    • /
    • 2005
  • Among the failure modes which can be occurred in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, the path-dependent limitation of FLD makes the application to hydroforming process, where strain path is no longer linear throughout forming process, more careful. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out Ihe state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified with a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the farming severity in hydroforming processes.

  • PDF

고체구조물의 비선형변형 수치해석에 대한 이론적 고찰(1) -일반이론- (A Study on the Numerical Technique for the Nonlinear Deformation Analysis of Solid Structures(1) -General Theory Development-)

  • Youngjoo Kwon
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.193-202
    • /
    • 1998
  • 본 논문에서는 비선형 고체역학 이론에 대하여 특히 시간에 무관한 변형을 하는 초탄성 및 탄소성고체물질의 비선형 변형이론에 대하여 철저한 분석을 수행하였다 특히 비선형 변형의 해석방범론에 대하여 특별한 관심을 가지고 분석하였다. 비선형 변형해석 방법론으로 널리 논의되고 있는 증분뉴튼랩슨 방법에 대하여 수정된 개념을 제시하여 비선형 변형 해석의 정 확성을 향상시켰다.

  • PDF

Semi-numerical simulation for effects of different loadings on vibration behavior of 2D systems

  • Rao, Li;Lin, Chao;Zhang, Chenglin
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.259-266
    • /
    • 2022
  • Based upon differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), an investigation on the free vibrations of 2D plate systems with nano-dimensions has been provided taking into account the effects of different mechanical loadings. In order to capture different mechanical loadings, a general form of variable compressive load applied in the axial direction of the plate system has been introduced. The studied plate has been constructed from two types of particles which results in graded material properties and nanoscale pores. The established formulation for the plate is in the context of a novel shear deformable model and the equations have been solved via a semi-numerical trend. Presented results indicate the prominence of material composition, nonlocal coefficient, strain gradient coefficient and boundary conditions on vibrational frequencies of nano-size plate.

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.