• Title/Summary/Keyword: general purpose FEM program

Search Result 8, Processing Time 0.026 seconds

Modeling and Analysis of Eardrum using FEM (고막의 유한요소 모델링 및 해석)

  • 강희용;김봉철;이동헌;임재중;전병훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.495-499
    • /
    • 2000
  • Auditory system is separated to Outer Ear, Middle Ear and Inner Ear, Middle Ear plays an important role as the sound transfer on amplitude. With analysing of Middle Ear, we can understand disease and compare unformal auditory systems. However, the investigation of mechanical modeling and analysis have been reported in a few paper. In this paper, a three dimensional Eardrum model of human ear was developed and analysed applying the general purpose Finite-Element program (Nastran). Vibration patterns of the eardrum obtained from FEM analysis are in agreements with the experimental results using stroboscope.

  • PDF

Finite Element Method for the Analysis of Deep Excavation in Urban Environment (도심지 굴착에 따른 토류구조물 및 인접지반의 유한요소 해석기법)

  • Lee, Bong-Ryeol;Kim, Gwang-Jin;Kim, Hak-Mun
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.35-44
    • /
    • 1997
  • A finite element computer program is developed for the specific analysis of earth retaining structures in urban excavation. Unlike the existing multi -purpose FEM programs, the newly developed program (EM) consists of very simple and easy data processing system for the urban excavation. A non-linear material model(GDHM, Generalized Decoupled Hyperbolic Models is deviloped and implemented in the program EM. The results of large scale model tests for earth retaining structures are used for the vertification of EM along whit GDHM, and the results were satisfactory, but it was found that the program EM needs minor modification for the improvement of its accuracy.

  • PDF

NUMERICAL SIMULATION OF THE CARBONIZATION PROCESS IN THE MANUFACTURING OF CARBON-CARBON COMPOSITES (탄소-탄소 복합재료의 제조 과정 중 탄화과정의 수치 해석에 관한 연구)

  • Kim, Jungin;Khalid Lafdi;Lee, Woo-Il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.219-222
    • /
    • 1999
  • A method for numerical simulation of the carbonization process in manufacturing of a carbon-carbon composite is developed. A general theory, which consists of analyses of heat and mass transfer together with stress and displacement predictions, is constructed. A homogeneous, single phase, isotropic material is selected and a computer program is developed for an arbitrary 2-dimensional geometry using FEM. Material properties are obtained through experiments and references, and are modeled effectively to serve the simulation purpose. The validity of the simulation is verified through several comparisons with experimental data, where close agreements are observed. Finally, examples of actual applications are considered to exhibit the capability and utilization of the code in process optimization.

  • PDF

Two-Dimensional Model Analysis for Extended Finite Element Method(XFEM) Verification of General Purpose Finite Element Analysis Program (범용유한요소해석 프로그램의 확장유한요소법 성능 검증을 위한 2차원 모델 해석)

  • Lee, Young Hwan;Kim, Donghwan;Park, Jaegyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.199-206
    • /
    • 2018
  • In this study, numerical analysis is applied to a two - dimensional model for verifying the general finite element program, Abaqus' s extended finite element method(XFEM). The cohesive element model used in the existing research has a limitation in simulating the actual crack because of the disadvantage that the crack path should be predicted and the element should be inserted. For this reason, the extended finite element method(XFEM), which predicts the path of cracks based on the directionality and specificity of stress, is emerging as a new solution in crack analysis. The validity of the XFEM application was confirmed by comparing the cohesive element analysis with the XFEM analysis by applying the crack path to the self - evident two - dimensional model. Numerical analysis confirms stress distribution and stress specificity immediately before crack initiation and compares it with actual crack initiation path. Based on this study, it is expected that cracks can be simulated by performing actual crack propagation analysis of complex models.

Analysis of Concrete Specimen Using Plasticity Theory (소성 이론을 이용한 콘크리트 공시체의 거동 해석)

  • Park, Jae-Gyun;Chung, Chul-Hun;Kang, Un-Suk;Hyun, Chang-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.89-97
    • /
    • 2006
  • Recently, experimental and theoretical studies about nonlinear behavior of large concrete structures are in progress. The purpose of this study is to describe the nonlinear behavior of a concrete specimen under compression using several plastic models and to choose the best plastic model for later use in numerical analyses of concrete structures. ABAQUS is a general-purpose FEM program and we tested all suitable embedded material models for concrete. To verify the effectiveness of nonlinear analyses, results were compared with uniaxial and triaxial compression test results.

Dynamic interaction analysis of submerged floating tunnel and vehicle (튜브형 수중교량의 교량-차량 동적상호작용 해석방법)

  • Kim, Moon-Young;Kwark, Jong-Won;Min, Dong-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.83-88
    • /
    • 2013
  • The purpose of this study is to develop the algorithm for dynamic interaction analysis of submerged floating tunnel and vehicles. The dynamic behavior characteristic of submerged floating tunnel is certainly different with general structures, because the submerged floating tunnel is floating in the middle of water, and subjected to constant buoyance. Therefore the analyses in various aspects should be carried out to secure structural stability and practicality of structures. To conduct the dynamic interaction analysis, the structure is modeled by commercial FEM program ABAQUS to investigate modal characteristic. Also the added mass concept is applied to represent the inertial force by a fluid, and then dynamic interaction analyses are conducted with superposition method when the KTX is moving along the submerged floating tunnel. And the time histories are presented for vertical and lateral displacement at the center of the tunnel.

  • PDF

Finite Element Method for Structural Concrete Based on the Compression Field Theory (압축응력장 이론을 적용한 콘크리트 유한요소법 개발)

  • 조순호
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.151-159
    • /
    • 1996
  • A finite element formulation based on the CFT(Compression Field Theory) concept such as the effect of compression softening in cracked concrete, and macroscopic and rotating crack models etc. was presented for the nonlinear behaviour of structural concrete. In this category, tangential or secant material stiffnesses for cracked concrete were also defined and discussed in view of the iterative solution schemes for nonlinear equations. Considering the computational efficiency and the ability of modelling the post-ultimate behaviour as major concerns, the incremental displacement solution algorithm involving initial material stiffnesses and the relaxation procedure for fast convergence was adopted and formulated in a type of 8-noded quadrilateral isoparametric elements. The analysis program NASCOM(Nonlinear Analysis of structrual Concrete by FEM : Monotonic Loading) developed baed on the CFT constitutive relationships and the incremetal solution strategy described enables the predictions of strength and deformation capacities in a full range. crack patterns and their corresponding widths, and yield extents of reinforcement. As the verfication purpose of NASCOM, the prediction of Cervenka's panel test results including the load resistance and the deformation history was made. A limited number of predictions indicate a good correlation in a general sense.

  • PDF

Nonlinear FEM analysis of Cable-stayed PSC Bridges Considering Time-dependent Behavior (시간 의존적 거동을 고려한 PSC 사장교의 비선형 유한요소해석)

  • Cho, Hwak-Shin;Seong, Dae-Jeong;Im, Duk-Ki;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.177-184
    • /
    • 2011
  • In this paper the nonlinear analysis that include time-dependent characteristics of materials and geometric nonlinearity of elements for the cable-stayed PSC bridges is presented. Analysis models for finite element method were developed based on the flexibility based fiber beam-column model originally proposed by Spacone et al.(1996). The developed analysis model implemented in general purpose object-oriented finite element analysis program named HFC(Cho 2009). The performance of proposed analysis models is evaluated by comparing with the former results of the design data. The deflection of time dependent analysis is larger than time ignored analysis on construction sequences, and the bridge is destructed at a smaller deflection than the time ignored analysis on failure behavior.