Browse > Article
http://dx.doi.org/10.7734/COSEIK.2018.31.4.199

Two-Dimensional Model Analysis for Extended Finite Element Method(XFEM) Verification of General Purpose Finite Element Analysis Program  

Lee, Young Hwan (IISO Inc.)
Kim, Donghwan (Department of Civil and Environmental Engineering, Dankook University)
Park, Jaegyun (Department of Civil and Environmental Engineering, Dankook University)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.31, no.4, 2018 , pp. 199-206 More about this Journal
Abstract
In this study, numerical analysis is applied to a two - dimensional model for verifying the general finite element program, Abaqus' s extended finite element method(XFEM). The cohesive element model used in the existing research has a limitation in simulating the actual crack because of the disadvantage that the crack path should be predicted and the element should be inserted. For this reason, the extended finite element method(XFEM), which predicts the path of cracks based on the directionality and specificity of stress, is emerging as a new solution in crack analysis. The validity of the XFEM application was confirmed by comparing the cohesive element analysis with the XFEM analysis by applying the crack path to the self - evident two - dimensional model. Numerical analysis confirms stress distribution and stress specificity immediately before crack initiation and compares it with actual crack initiation path. Based on this study, it is expected that cracks can be simulated by performing actual crack propagation analysis of complex models.
Keywords
cohesive element; crack propagation; XFEM; general purpose FEM program;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Abaqus (2014) Abaqus Analysis User's Guide Version 6.14, Dassault Systems Simulia Corp.
2 Alfarah, B., Lopez-Almansa, F., Oller, S. (2017) New Methodology for Calculating Damage Variables Evolution in Plastic Damage Model for RC Structures, Eng. Struct., 132, pp.70-86.   DOI
3 Bazant, Z.P., Oh, B.H. (1983) Crack Band Theory for Fracture of Concrete, Mater. & Struct., 16, pp.155-177.
4 Belytschko, T., Black, T. (1999) Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer. Methods Eng, 45(5), pp.601-620.   DOI
5 Budyn, E., Zi, G., Moes, T., Belytschko, T. (2004) A Method for Multiple Crack Growth in Brittle Materials without Remeshing, Int. J. Numer. Methods Eng, 61, pp.1741-1770.   DOI
6 Cox, B., Yang, Q. (2005) Cohesive Models for Damage Evolution in Laminated Composites, Int. J. Fract., 133, pp.107-137.   DOI
7 Georgiou, I., Hadavinia, H., Ivankovic, A., Kinloch, J., Tropsa, V., Willians, G. (2003) Cohesive Zone Models and the Plastically Deforming Pell Test, J. Adhes., 79, pp.239-265.   DOI
8 Ha, S. (2009) Numerical Simulations of Crack Initiation and Propagation Using Cohesive Zone Elements, J. Comp. Struct. Eng. Inst. Korea, 22(6), pp.519-526.
9 Kral, P., Hradil, P., Kala, J., Hokes, F., Husek, M. (2017) Identification of parameters of a Concrete Damage Material Model, Proc. Engi., 172, pp.578-585.   DOI
10 Moes, N., Dolbow, J., Belytschko, T. (1999) A Finite Element Method for Crack Growth without Remeshing, IJNME, 46, pp.131-150.   DOI
11 Slowik, M., Nowicki, T. (2012) The Analysis of Diagonal Crack Propagation in Concrete Beams, Comput. Mech., 52, pp.261-267.
12 Rabczuk, T., Belytschko, T. (2006) Application of Particle Methods to Static Fracture of Reinforced Concrete Strctures, Int. J. Fract, 137, pp.19-49.   DOI
13 Rabczuk, T., Bordas, S., Zi, G. (2007) A Three Dimensional Meshfree Method for Continuous Multiple-crack Initiation, Propagation and Junction in Statics and Dynamics, Comput. Mech., 40, pp.473-495.   DOI
14 Slowik, M., Nowicki, T. (2012) The Analysis of Diagonal Crack Propagation in Concrete Beams, Comput.l Mater. Sci., 52, pp.261-267.   DOI
15 Snozzi, L., Molinari, J.F. (2013) A Cohesive Element Model for Mixed Mode Loading with Frictional Contact Capability, IJNME, 93(5), pp.510-526.   DOI
16 Yoo, H., Kim, H. (2016) Simulation of Multi-Cracking in a Reinforced Concrete Beam by Extended Finite Element Method, J. Comput. Struct. Eng. Inst. Korea, 29(2), pp.201-208.   DOI
17 Sumer, Y., Aktas, M. (2015) Defining Parameters for Concrete Damage Plasticity Model, Chall. J. Struct. Mech., 1(3), pp.149-155.