• Title/Summary/Keyword: general face model

Search Result 112, Processing Time 0.036 seconds

Mesoscale modelling of concrete for static and dynamic response analysis -Part 2: numerical investigations

  • Lu, Yong;Tu, Zhenguo
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.215-231
    • /
    • 2011
  • As a brittle and heterogeneous material, concrete behaves differently under different stress conditions and its bulk strength is loading rate dependent. To a large extent, the varying behavioural properties of concrete can be explained by the mechanical failure processes at a mesoscopic level. The development of a computational mesoscale model in a general finite element environment, as presented in the preceding companion paper (Part 1), makes it possible to investigate into the underlying mechanisms governing the bulk-scale behaviour of concrete under a variety of loading conditions and to characterise the variation in quantitative terms. In this paper, we first present a series of parametric studies on the behaviour of concrete material under quasi-static compression and tension conditions. The loading-face friction effect, the possible influences of the non-homogeneity within the mortar and ITZ phases, and the effect of randomness of coarse aggregates are examined. The mesoscale model is then applied to analyze the dynamic behaviour of concrete under high rate loading conditions. The potential contribution of the mesoscopic heterogeneity towards the generally recognized rate enhancement of the material compressive strength is discussed.

Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre

  • Katariya, Pankaj V.;Panda, Subrata K.;Hirwani, Chetan K.;Mehar, Kulmani;Thakare, Omprakash
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.595-605
    • /
    • 2017
  • The present article reported the thermal buckling strength of the sandwich shell panel structure and subsequent improvement of the same by embedding shape memory alloy (SMA) fibre via a general higher-order mathematical model in conjunction with finite element method. The geometrical distortion of the panel structure due to the temperature is included using Green-Lagrange strain-displacement relations. In addition, the material nonlinearity of SMA fibre due to the elevated thermal environment also incorporated in the current analysis through the marching technique. The final form of the equilibrium equation is obtained by minimising the total potential energy functional and solved computationally with the help of an original MATLAB code. The convergence and the accuracy of the developed model are demonstrated by solving similar kind of published numerical examples including the necessary input parameter. After the necessary establishment of the newly developed numerical solution, the model is extended further to examine the effect of the different structural parameters (side-to-thickness ratios, curvature ratios, core-to-face thickness ratios, volume fractions of SMA fibre and end conditions) on the buckling strength of the SMA embedded sandwich composite shell panel including the different geometrical configurations.

Evaluation of Resistance of Concrete-Face Rockfill Dam to Seismic Loading Using Shaking Table Test (진동대시험을 이용한 콘크리트 표면 차수벽형 석괴댐의 내진성능 평가)

  • Ha, Ik-Soo;Kim, Yong-Seong;Seo, Min-Woo;Park, Dong-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1118-1125
    • /
    • 2005
  • In this study, seismic safety of CFRD(Concrete-Face Rockfill Dam) type "D" dam in operation is evaluated from the results of 1-g shaking table test using similitude laws. Model dam is made by similitude law considering the grain size of prototype dam component. After the model dam is impounded to the normal water level(N.W.L), it is excited by artificial earthquake wave corresponding to standard design respond spectrum of the "D" dam site. Displacement response behavior of the dam is examined through the measurement of vertical and horizontal displacement of dam crest. Also, amplification characteristics of acceleration with dam height is examined through the measurement of acceleration with dam height. Finally, the purpose of this study is to evaluate seismic safety of "D" dam in operation. From the results of acceleration measurement, it was found that acceleration of dam crest was amplified about 1.52 times compared to the acceleration of dam bottom and amplification phenomenon is outstanding at three quarters of dam height from the bottom of dam. From the analysis of displacement behavior, it was estimated that vertical displacement of prototype dam is 6.8cm (0.1% of dam height) and horizontal displacement 12.3cm(0.2% of dam height). These percentages is much lower than 1% of dam height(general stability criteria). Therefore, it was concluded that seismic stability of "D" dam against an estimated earthquake is guaranteed.

  • PDF

Effects of Excavation Methods on Tunnel Deformation Behavior using Finite Element Analysis (굴착공법이 터널변위 거동에 미치는 영향-유한요소해석)

  • Yoo, Chung-Sik;Kim, Joo-Mi;Kim, Sun-Bin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.199-207
    • /
    • 2006
  • Before getting to the actual study of the load distribution factor in various excavating methods, this research is preliminarily focused on the comparison of two different excavation methods, CD cut method and Ringcut method. Especially, the purpose of this research is to study the behavioral mechanism of two tunnels which share the same construction environment but different excavating method. Two numerical analysis models with the same tunnel section and material properties are compared in this study, and they are analyzed by 3D Finite Element Analysis. In each model, face stability, crown displacement, ground settlement, and shotcrete-lining stress are computed. Thus, the general behavior of CD cut method and Ringcut method are studied, and it certified what should be considered for the calculation of the load distribution factor.

  • PDF

Fuzzy Syntactic Pattern Recognition Approach for Extracting and Classifying Flaw Patterns from and Eddy-Current Signal Waveform

  • Kang, Soon-Ju
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.59-65
    • /
    • 1997
  • In this paper, a general fuzzy syntactic method for recognition of flaw patterns and for the measurement of flaw characteristic parameters for a non-destructive inspections signal, called eddy-current, is presented. Solutions are given to the subtasks of primitive pattern selection, signal to symbol transformation, pattern grammar formulation, and event-synchronous flaw pattern extraction based on the grammars. Fuzzy attribute grammars are used as the model for the pattern grammar because of their descriptive power in the face of uncertain constraints caused by nose or distortion in the signal waveform, due to their ability to handle syntactic as well as semantic information. This approach has been implemented and the performance of eh resultant system has been evaluated using a library of law patterns obtained from steam generator tubes in nuclear power plants by an eddy current-based non-destructive inspection method.

  • PDF

Multiobjective State-Feedback Control of Beams with Piezoelectric Device (압전체가 부착된 보의 다목적 상태궤한제어)

  • Park, Chul-Hue;Hong, Seong-Il;Park, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.828-833
    • /
    • 2004
  • The performance of a mixed $H_{\infty}/H_2$ design with pole placement constraints based on robust vibration control for a piezo/beam system is investigated. The governing equation of motion for the piezo/beam system is derived by Hamilton's principle. The assumed mode method is used to discretize the governing equation into a set of ordinary differential equation. A robust controller is designed by $H_{\infty}/H_2$ feedback control law that satisfies additional constraints on the closed-loop pole location in the face of model uncertainties, which are derived for a general class of convex regions of the complex plane. These constraints are expressed in terms of linear matrix inequalities (LMIs) approach for the multiobjective synthesis. The validity and applicability of this approach for vibration suppressions of SMART structural systems are discussed by damping out the multiple vibrational modes of the piezo/beam system.

  • PDF

Hybrid parallel smooth particle hydrodynamic for probabilistic tsunami risk assessment and inland inundation

  • Sihombing, Fritz;Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.185-194
    • /
    • 2019
  • The probabilistic tsunami risk assessment of large coastal areas is challenging because the inland propagation of a tsunami wave requires an accurate numerical model that takes into account the interaction between the ground, the infrastructures, and the wave itself. Classic mesh-based methods face many challenges in the propagation of a tsunami wave inland due to their ever-moving boundary conditions. In alternative, mesh-less based methods can be used, but they require too much computational power in the far-field. This study proposes a hybrid approach. A mesh-based method propagates the tsunami wave from the far-field to the near-field, where the influence of the sea floor is negligible, and a mesh-less based method, smooth particle hydrodynamic, propagates the wave onto the coast and inland, and takes into account the wave structure interaction. Nowadays, this can be done because the advent of general purpose GPUs made mesh-less methods computationally affordable. The method is used to simulate the inland propagation of the 2004 Indian Ocean tsunami off the coast of Indonesia.

Facial Feature Detection and Facial Contour Extraction using Snakes (얼굴 요소의 영역 추출 및 Snakes를 이용한 윤곽선 추출)

  • Lee, Kyung-Hee;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.7
    • /
    • pp.731-741
    • /
    • 2000
  • This paper proposes a method to detect a facial region and extract facial features which is crucial for visual recognition of human faces. In this paper, we extract the MER(Minimum Enclosing Rectangle) of a face and facial components using projection analysis on both edge image and binary image. We use an active contour model(snakes) for extraction of the contours of eye, mouth, eyebrow, and face in order to reflect the individual differences of facial shapes and converge quickly. The determination of initial contour is very important for the performance of snakes. Particularly, we detect Minimum Enclosing Rectangle(MER) of facial components and then determine initial contours using general shape of facial components within the boundary of the obtained MER. We obtained experimental results to show that MER extraction of the eye, mouth, and face was performed successfully. But in the case of images with bright eyebrow, MER extraction of eyebrow was performed poorly. We obtained good contour extraction with the individual differences of facial shapes. Particularly, in the eye contour extraction, we combined edges by first order derivative operator and zero crossings by second order derivative operator in designing energy function of snakes, and we achieved good eye contours. For the face contour extraction, we used both edges and grey level intensity of pixels in designing of energy function. Good face contours were extracted as well.

  • PDF

User-Steered Extraction of Geometric Features for 3D Triangular Meshes (사용자 의도에 의한 삼차원 삼각형 메쉬의 기하적 특징 추출)

  • Yoo, Kwan-Hee;Ha, Jong Sung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.9 no.2
    • /
    • pp.11-18
    • /
    • 2003
  • For extracting geometric features in 3D meshes according to user-steering with effective interactions. this paper generalizes the 2D algorithms of snapping and wrapping that. respectively. moves a cursor to a nearby feature and constructs feature boundaries. First. we define approximate curvatures and move cost functions that are the numerical values measuring the geometric characteristics of the meshes, By exploiting the measuring values. the algorithms of geometric snapping and geometric wrapping are developed and implemented. We also visualize the results from applying the algorithms to extracting geometric features of general 3D mesh models such as a face model and a tooth model.

  • PDF

Exploratory Study of Dimensions of Health-related Quality of Life in the General Population of South Korea

  • Kim, Seon-Ha;Jo, Min-Woo;Ock, Minsu;Lee, Sang-il
    • Journal of Preventive Medicine and Public Health
    • /
    • v.50 no.6
    • /
    • pp.361-368
    • /
    • 2017
  • Objectives: This study aimed to explore dimensions in addition to the 5 dimensions of the 5-level EQ-5D version (EQ-5D-5L) that could satisfactorily explain variation in health-related quality of life (HRQoL) in the general population of South Korea. Methods: Domains related to HRQoL were searched through a review of existing HRQoL instruments. Among the 28 potential dimensions, the 5 dimensions of the EQ-5D-5L and 7 additional dimensions (vision, hearing, communication, cognitive function, social relationships, vitality, and sleep) were included. A representative sample of 600 subjects was selected for the survey, which was administered through face-to-face interviews. Subjects were asked to report problems in 12 health dimensions at 5 levels, as well as their self-rated health status using the EuroQol visual analogue scale (EQ-VAS) and a 5-point Likert scale. Among subjects who reported no problems for any of the parameters in the EQ-5D-5L, we analyzed the frequencies of problems in the additional dimensions. A linear regression model with the EQ-VAS as the dependent variable was performed to identify additional significant dimensions. Results: Among respondents who reported full health on the EQ-5D-5L (n=365), 32% reported a problem for at least 1 additional dimension, and 14% reported worse than moderate self-rated health. Regression analysis revealed a $R^2$ of 0.228 for the original EQ-5D-5L dimensions, 0.200 for the new dimensions, and 0.263 for the 12 dimensions together. Among the added dimensions, vitality and sleep were significantly associated with EQ-VAS scores. Conclusions: This study identified significant dimensions for assessing self-rated health among members of the general public, in addition to the 5 dimensions of the EQ-5D-5L. These dimensions could be considered for inclusion in a new preference-based instrument or for developing a country-specific HRQoL instrument.