• Title/Summary/Keyword: general dynamical systems

Search Result 26, Processing Time 0.03 seconds

CHAIN RECURRENCE AND ATTRACTORS IN GENERAL DYNAMICAL SYSTEMS

  • Lee, Kyung-Bok;Park, Jong-Shu
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.575-586
    • /
    • 2007
  • We introduce here notions of chain recurrent sets, attractors and its basins for general dynamical systems and prove important properties including (i) the chain recurrent set CR(f) of f on a metric space (X, d) is the complement of the union of sets B(A) -A as A varies over the collection of attractors and (ii) genericity of general dynamical systems.

CONTINUITY OF THE ORBITAL AND LIMIT SET MAPS IN GENERAL DYNAMICAL SYSTEMS

  • Lee, Kyung-Bok;Park, Jong-Suh
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.649-660
    • /
    • 2011
  • S. M. Saperstone and M. Nishihama [6] had showed both continuity and stability of the orbital and limit set maps, K(x) and L(x), where K and L are considered as maps from X to $2^X$. The main purpose of this paper is to extend continuity and stability for dynamical systems to general dynamical systems.

ASYMPTOTIC STABILITY IN GENERAL DYNAMICAL SYSTEMS

  • Lim, Young-Il;Lee, Kyung-Bok;Park, Jong-Soh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.4
    • /
    • pp.665-676
    • /
    • 2004
  • In this paper we characterize asymptotic stability via Lyapunov function in general dynamical systems on c-first countable space. We give a family of examples which have first countable but not c-first countable, also c-first countable and locally compact space but not metric space. We obtain several necessary and sufficient conditions for a compact subset M of the phase space X to be asymptotic stability.

Experimental analyses of dynamical systems involving shape memory alloys

  • Enemark, Soren;Savi, Marcelo A.;Santos, Ilmar F.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1521-1542
    • /
    • 2015
  • The use of shape memory alloys (SMAs) in dynamical systems has an increasing importance in engineering especially due to their capacity to provide vibration reductions. In this regard, experimental tests are essential in order to show all potentialities of this kind of systems. In this work, SMA springs are incorporated in a dynamical system that consists of a one degree of freedom oscillator connected to a linear spring and a mass, which is also connected to the SMA spring. Two types of springs are investigated defining two distinct systems: a pseudoelastic and a shape memory system. The characterisation of the springs is evaluated by considering differential calorimetry scanning tests and also force-displacement tests at different temperatures. Free and forced vibration experiments are made in order to investigate the dynamical behaviour of the systems. For both systems, it is observed the capability of changing the equilibrium position due to phase transformations leading to hysteretic behaviour, or due to temperature changes which also induce phase transformations and therefore, change in stiffness. Both situations are investigated by promoting temperature changes and also pre-tension of the springs. This article shows several experimental tests that allow one to obtain a general comprehension of the dynamical behaviour of SMA systems. Results show the general thermo-mechanical behaviour of SMA dynamical systems and the obtained conclusions can be applied in distinct situations as in rotor-bearing systems.

Identification of nonlinear dynamical systems based on self-organized distributed networks (자율분산 신경망을 이용한 비선형 동적 시스템 식별)

  • 최종수;김형석;김성중;권오신;김종만
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.574-581
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Networks(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Self-Organized Distributed Networks (SODN). The learning with the SODN is fast and precise. Such properties are caused from the local learning mechanism. Each local network learns only data in a subregion. This paper also discusses neural network as identifier of nonlinear dynamical systems. The structure of nonlinear system identification employs series-parallel model. The identification procedure is based on a discrete-time formulation. Through extensive simulation, SODN is shown to be effective for identification of nonlinear dynamical systems. (author). 13 refs., 7 figs., 2 tabs.

  • PDF

Design of nonlinear system controller based on radial basis function network (Radial Basis 함수 회로망을 이용한 비선형 시스템 제어기의 설계에 관한 연구)

  • 박경훈;이양우;차득근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1165-1168
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Network(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Radial Basis Function Networks(RBFN). The learning with RBFN is fast and precise. This paper discusses RBFN as identification procedure is based on a nonlinear dynamical systems. and A design method of model follow control system based on RBFN controller is developed. As a result of applying this method to inverted pendulum, the simulation has shown that RBFN can be used as identification and control of nonlinear dynamical systems effectively.

  • PDF

Collection of dynamical systems with dimensional reduction as a multiscale method of modelling for mechanics of materials

  • Kaczmarek, Jaroslaw
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.1-22
    • /
    • 2010
  • In this paper one introduces a method of multiscale modelling called collection of dynamical systems with dimensional reduction. The method is suggested to be an appropriate approach to theoretical modelling of phenomena in mechanics of materials having in mind especially dynamics of processes. Within this method one formalizes scale of averaging of processes during modelling. To this end a collection of dynamical systems is distinguished within an elementary dynamical system. One introduces a dimensional reduction procedure which is designed to be a method of transition between various scales. In order to consider continuum models as obtained by means of the dimensional reduction one introduces continuum with finite-dimensional fields. Owing to geometrical elements associated with the elementary dynamical system we can formalize scale of averaging within continuum mechanics approach. In general presented here approach is viewed as a continuation of the rational mechanics.

A Study of Nonlinear Behaviors in Power Systems with SMES (SMES를 포함하는 전력계통의 비선형현상 해석에 관한 연구)

  • Ahn, Byong-Hak;Lee, Byong-Jun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.379-387
    • /
    • 1999
  • In general, solving or analyzing nonilinear dynamical equations is very difficult and requires special techniques. To avoid these difficulties, systems are generally linearized in an attempt to predict their begavior. These linearized equations, however, may not predict true system behavior. Therefore, the nonlinear dynamical analysis using bifurcation theory may become a fundamental framework in understanding nonlinear situation in power systems. In this paper, we propose a systematic procedure based on a bifurcation theory to analyze nonlinear behaviors in power systems. We show usefulness of our procedure by applying 3-bus model system. In addition, we consider nonlinear model of SMES and verify the effect of SMES in power system's nonlinear behaviors.

  • PDF

Adaptive Robust Output Tracking for Nonlinear MMO Systems

  • Im, Kyu-Mann
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.177-182
    • /
    • 2003
  • The robust output tracking control problem of general nonlinear MIMO systems is discussed. The robustness against parameter uncertainties is considered. In this paper, we proposed the robust output tracking control scheme for a class of MIMO nonlinear dynamical systems using output feedback linearization method. The presented control scheme is based on the VSS. We assume that the nonlinear dynamical system is minimum phase, the relative degree of the system is r$_{1}$+r$_{2}$+…r$_{m}$$\leq$ n and zero dynamics is stable. It is shown that the outputs of the closed-loop system asymptotically track given output trajectories despite the uncertainties while maintaining the boundedness of all signals inside the loop. And we verified that the proposed control scheme is then applied to the control of a two degree of freedom (DOF) robotic manipulator with payload.d.

  • PDF

An exosolar planetary system N-body simulator II

  • Hong, ChaeLin;van Putten, Maurice
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.46.3-47
    • /
    • 2018
  • We present a general N-body exasolar system simulator in anticipation of upcoming searches for exoplanets and even exomoons by next generation telescopes such as James Webb Space Telescope. For habitable zones, traditionally defined by temperature, we here address the essential problem of dynamical stability of planetary orbits. Illustrative examples are presented on P-type orbits in stellar binary systems, that should be fairly common as in Kepler 16b. Specific attention is paid to reduced orbital lifetimes of exoplanets in the habitable zone by the stellar binary, that is propoesed by Maurice van Putten (2017). Especially, we focused on a classic work of complex three-body problem that is well known by Dvorak(1986). We charge his elliptic restricted three-body problem to extend unrestricted three-body problem to look into dynamical motions in view of circumbinary planet, furthermore, we suggest that opposite angular orientation of the planet is relative to the stability of orbits. In here, counter-rotation case is relatively more faster than co-rotation case for being stable. As a result, we find that various initial conditions and thresholds to approach dynamical stability and unstability with unexpectable isolated islands over enormous parameter space. Even, superkeplerian effect of binary is important to habitability of the exoplanet and we can verify that superfaster binary doesn't effect on th planet and increases survivality of planet around the binary.

  • PDF