• Title/Summary/Keyword: general double q-hypergeometric series

Search Result 3, Processing Time 0.021 seconds

RECURSION FORMULAS FOR q-HYPERGEOMETRIC AND q-APPELL SERIES

  • Sahai, Vivek;Verma, Ashish
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.207-236
    • /
    • 2018
  • We obtain recursion formulas for q-hypergeometric and q-Appell series. We also find recursion formulas for the general double q-hypergeometric series. It is shown that these recursion relations can be expressed in terms of q-derivatives of the respective q-hypergeometric series.

A reducible case of double hypergeometric series involving the riemann $zeta$-function

  • Park, Junesang;H. M. Srivastava
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.107-110
    • /
    • 1996
  • Usng the Pochhammer symbol $(\lambda)_n$ given by $$ (1.1) (\lambda)_n = {1, if n = 0 {\lambda(\lambda + 1) \cdots (\lambda + n - 1), if n \in N = {1, 2, 3, \ldots}, $$ we define a general double hypergeometric series by [3, pp.27] $$ (1.2) F_{q:s;\upsilon}^{p:r;u} [\alpha_1, \ldots, \alpha_p : \gamma_1, \ldots, \gamma_r; \lambda_1, \ldots, \lambda_u;_{x,y}][\beta_1, \ldots, \beta_q : \delta_1, \ldots, \delta_s; \mu_1, \ldots, \mu_v; ] = \sum_{l,m = 0}^{\infty} \frac {\prod_{j=1}^{q} (\beta_j)_{l+m} \prod_{j=1}^{s} (\delta_j)_l \prod_{j=1}^{v} (\mu_j)_m)}{\prod_{j=1}^{p} (\alpha_j)_{l+m} \prod_{j=1}^{r} (\gamma_j)_l \prod_{j=1}^{u} (\lambda_j)_m} \frac{l!}{x^l} \frac{m!}{y^m} $$ provided that the double series converges.

  • PDF

CERTAIN CLASSES OF INFINITE SERIES DEDUCIBLE FROM MELLIN-BARNES TYPE OF CONTOUR INTEGRALS

  • Choi, Junesang;Agarwal, Praveen
    • The Pure and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.233-242
    • /
    • 2013
  • Certain interesting single (or double) infinite series associated with hypergeometric functions have been expressed in terms of Psi (or Digamma) function ${\psi}(z)$, for example, see Nishimoto and Srivastava [8], Srivastava and Nishimoto [13], Saxena [10], and Chen and Srivastava [5], and so on. In this sequel, with a view to unifying and extending those earlier results, we first establish two relations which some double infinite series involving hypergeometric functions are expressed in a single infinite series involving ${\psi}(z)$. With the help of those series relations we derived, we next present two functional relations which some double infinite series involving $\bar{H}$-functions, which are defined by a generalized Mellin-Barnes type of contour integral, are expressed in a single infinite series involving ${\psi}(z)$. The results obtained here are of general character and only two of their special cases, among numerous ones, are pointed out to reduce to some known results.