• 제목/요약/키워드: gene-switch technology

검색결과 5건 처리시간 0.023초

The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse

  • Lee, Hyo Gun;Khummuang, Saichit;Youn, Hyun-Hee;Park, Jeong-Woong;Choi, Jae-Young;Shin, Teak-Soon;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Jakyeom;Kim, Myunghoo;Park, Tae Sub;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8호
    • /
    • pp.1095-1103
    • /
    • 2019
  • Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme $1{\alpha}$ ($IRE1{\alpha}$)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates $IRE1{\alpha}$ signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. Methods: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. Results: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. Conclusion: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

Gene-editing techniques and their applications in livestock and beyond

  • Tae Sub Park
    • Animal Bioscience
    • /
    • 제36권2_spc호
    • /
    • pp.333-338
    • /
    • 2023
  • Genetic modification enables modification of target genes or genome structure in livestock and experimental animals. These technologies have not only advanced bioscience but also improved agricultural productivity. To introduce a foreign transgene, the piggyBac transposon element/transposase system could be used for production of transgenic animals and specific target protein-expressing animal cells. In addition, the clustered regularly interspaced short palindromic repeat-CRISPR associated protein 9 (CRISPR-Cas9) system have been utilized to generate chickens with knockout of G0/G1 switch gene 2 (G0S2) and myostatin, which are related to lipid deposition and muscle growth, respectively. These experimental chickens could be the invaluable genetic resources to investigate the regulatory pathways and mechanisms of improvement of economic traits such as fat quantity and growth. The gene-edited animals could also be applicable to the livestock industry.

CROX (Cluster Regulation of RUNX) as a Potential Novel Therapeutic Approach

  • Kamikubo, Yasuhiko
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.198-202
    • /
    • 2020
  • Comprehensive inhibition of RUNX1, RUNX2, and RUNX3 led to marked cell suppression compared with inhibition of RUNX1 alone, clarifying that the RUNX family members are important for proliferation and maintenance of diverse cancers, and "cluster regulation of RUNX (CROX)" is a very effective strategy to suppress cancer cells. Recent studies reported by us and other groups suggested that wild-type RUNX1 is needed for survival and proliferation of certain types of leukemia, lung cancer, gastric cancer, etc. and for their one of metastatic target sites such as born marrow endothelial niche, suggesting that RUNX1 often functions oncogenic manners in cancer cells. In this review, we describe the significance and paradoxical requirement of RUNX1 tumor suppressor in leukemia and even solid cancers based on recent our findings such as "genetic compensation of RUNX family transcription factors (the compensation mechanism for the total level of RUNX family protein expression)", "RUNX1 inhibition-induced inhibitory effects on leukemia cells and on solid cancers through p53 activation", and "autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells". Taken together, these findings identify a crucial role for the RUNX cluster in the maintenance and progression of cancers and suggest that modulation of the RUNX cluster using the pyrrole-imidazole polyamide gene-switch technology is a potential novel therapeutic approach to control cancers.

The Regulation of Lipolysis in Adipose Tissue

  • Serr, Julie;Li, Xiang;Lee, Kichoon
    • Journal of Animal Science and Technology
    • /
    • 제55권4호
    • /
    • pp.303-314
    • /
    • 2013
  • Knowledge regarding lipid catabolism has been of great interest in the field of animal sciences. In the livestock industry, excess fat accretion in meat is costly to the producer and undesirable to the consumer. However, intramuscular fat (marbling) is desirable to enhance carcass and product quality. The manipulation of lipid content to meet the goals of animal production requires an understanding of the detailed mechanisms of lipid catabolism to help meticulously design nutritional, pharmacological, and physiological approaches to regulate fat accretion. The concept of a basic system of lipases and their co-regulators has been identified. The major lipases cleave triacylglycerol (TAG) stored in lipid droplets in a sequential manner. In adipose tissue, adipose triglyceride lipase (ATGL) performs the first and rate-limiting step of TAG breakdown through hydrolysis at the sn-1 position of TAG to release a non-esterified fatty acid (NEFA) and diacylglycerol (DAG). Subsequently, cleavage of DAG occurs via the rate-limiting enzyme hormone-sensitive lipase (HSL) for DAG catabolism, which is followed by monoglyceride lipase (MGL) for monoacylglycerol (MAG) hydrolysis. Recent identification of the co-activator (Comparative Gene Identification-58) and inhibitor [G(0)/G(1) Switch Gene 2] of ATGL have helped elucidate this important initial step of TAG breakdown, while also generating more questions. Additionally, the roles of these lipolysis-related enzymes in muscle, liver and skin tissue have also been found to be of great importance for the investigation of systemic lipolytic regulation.

Schizosaccharomyces bombe 포자형성 유전자(spo5)의 Cloning 및 전사조절 (Cloning and Transcription Analysis of Sporulation Gene (spo5) in Schizosaccharomyces pombe)

  • 김동주
    • 한국식품영양학회지
    • /
    • 제15권2호
    • /
    • pp.112-118
    • /
    • 2002
  • 분열효모 S. pombe의 포자형성은 배지상의 질소원 고갈에 의해 유도되어지며 감수분열로부터 포자형성에 도달하는 과정에는 다수의 특이적인 유전자들이 관여하고 있다. 본 실험에서는 S. pombe genomic library 형질 전환법으로 spo5 유전자를 상보하는 clone을 screening한 후, sport 유전자를 단리하였다$^{8)}$ . 전포자막 구축에 필수적인 sport 유전자를 보유하는 약 5kb의 DNA 단편을 대장균, 효모 shuttle vector pTB248'의 Hind III 부위에 subclonning하였다. 그리고 이 DNA단편으로부터 제한 효소 지도를 작성하여(Fig. 2), spo5 변이체의 상보 능력을 조사하였다 (Fig. 3). 결과에서 서술한 바와 같이 상보능력은 동일하였으며, 이러한 상보성 실험 결과로부터 삽입된 단편상의 유전자 발현은 벡터의 promoter로부터 전사가 일어나는 것이 아니라, 삽입 단편상의 효모 고유의 promoter 에 의해서 전사가 일어나는 것으로 확인되었다. 따라서 clone화 한 DNA 단편 배열상에는 변역영역뿐만 아니라 promoter 영역이 포함된 것으로 판단되었다. 결실변이 도입 해석으로부터, spo5 유전자는 Sma I 부터 Hind m의 3kb 영역에 존재하였고 (Fig. 3), Nor-thern분석에 의해서 spo5 유전자의 전사를 조사한 결과, spo5 -mRNA는 Sma I 부터 Hind III 의 3kb 영 역에서 약2.5kb 크기로 검출되었다. 이 단편의 유전해석으로 부터 약 2.5kb의 전사산물은 최대 800개의 아미노산 잔기를 code하는 단백질로 판단되었다(Fig. 4). 그리고, Northern 분석법에 의해서 spo5 유전자의 전사를 조사한 결과, 서술한 바와 같이, 이 유전자는 질소기아 조건하에서만 유전자가 발현되는 것을 확인하였다(Fig. 4-2.5kb 단편).었다. 그리고 Edman법으로 결정한 PPIase의 39아미노산 잔기가 이 배열내에 완전히 보존되어 있었다. 이 결과로부터 이 ORF는PPIase구조 유전자의 1/3에 해당하는 단편임을 확인하였다. training system to a dangerous work like as "Interruption-free live-line work exchanging COS(Cut-Out-Switch)". In this program, the user works with a instruction on the window and speaker and can't work other tasks until each part of the task completed. The workers using this system can use their hands and viewpoint movement as he is in a real environment but the trainee can't use all parts and senses of a real body with the current VR technology. Despite of this weak point, when we consider the trends of improvement in electrical devices and communication technology, we can say that 3D graphic VR application has a high potentiality.) 야생화 초지(NWP, IWP)는 관행 혼파초지나 하번초 혼파초지에 비하여 동물상이 다양하고 많게 분포되었으며 그중 외국산 야생화초지의 동물 개체수가 가장 많게 나타났다. 이상의 결과를 종합할 때, 야생화 초지는 봄부터 가을까지 야생화가 지속되었고, 양서류 및 곤충의 개체 수가 증가되었던 것으로 보아 야생화 초지의 공익적인 측면에서의 활용 가능성도 클 것으로 기대된다