• 제목/요약/키워드: gene-gene interaction

검색결과 753건 처리시간 0.037초

Functional characterization of ABA signaling components using transient gene expression in rice protoplasts

  • Song, In-Sik;Moon, Seok-Jun;Kim, Jin-Ae;Yoon, Insun;Kwon, Taek-Ryoun;Kim, Beom-Gi
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.109-109
    • /
    • 2017
  • The core components of ABA-dependent gene expression signaling have been identified in Arabidopsis and rice. This signaling pathway consists of four major components; group A OsbZIPs, SAPKs, subclass A OsPP2Cs and OsPYL/RCARs in rice. These might be able to make thousands of combinations through interaction networks resulting in diverse signaling responses. We tried to characterize those gene functions using transient gene expression for rice protoplasts (TGERP) because it is instantaneous and convenient system. Firstly, in order to monitor the ABA signaling output, we developed reporter system named pRab16A-fLUC which consists of Rab16A promoter of rice and luciferase gene. It responses more rapidly and sensitively to ABA than pABRC3-fLUC that consists of ABRC3 of HVA1 promoter in TGERP. We screened the reporter responses for over-expression of each signaling components from group A OsbZIPs to OsPYL/RCARs with or without ABA in TGERP. OsbZIP46 induced reporter most strongly among OsbZIPs tested in the presence of ABA. SAPKs could activate the OsbZIP46 even in the ABA independence. Subclass A OsPP2C6 and -8 almost completely inhibited the OsbZIP46 activity in the different degree through the SAPK9. Lastly, OsPYL/RCAR2 and -5 rescued the OsbZIP46 activity in the presence of SAPK9 and OsPP2C6 dependent on ABA concentration and expression level. By using TGERP, we could characterize successfully the effects of ABA dependent gene expression signaling components in rice. In conclusion, TGERP represents very useful technology to study systemic functional genomics in rice or other monocots.

  • PDF

Keloid Scarring: Understanding the Genetic Basis, Advances, and Prospects

  • Halim, Ahmad Sukari;Emami, Azadeh;Salahshourifar, Iman;Kannan, Thirumulu Ponnuraj
    • Archives of Plastic Surgery
    • /
    • 제39권3호
    • /
    • pp.184-189
    • /
    • 2012
  • Keloid disease is a fibroproliferative dermal tumor with an unknown etiology that occurs after a skin injury in genetically susceptible individuals. Increased familial aggregation, a higher prevalence in certain races, parallelism in identical twins, and alteration in gene expression all favor a remarkable genetic contribution to keloid pathology. It seems that the environment triggers the disease in genetically susceptible individuals. Several genes have been implicated in the etiology of keloid disease, but no single gene mutation has thus far been found to be responsible. Therefore, a combination of methods such as association, gene-gene interaction, epigenetics, linkage, gene expression, and protein analysis should be applied to determine keloid etiology.

Genetic Variation in Exon 3 of Human Apo B mRNA Editing Protein (apobec-1) Gene

  • Hong, Seung-Ho;Song, Jung-Han;Kim, Jin-Q
    • Journal of Genetic Medicine
    • /
    • 제3권1호
    • /
    • pp.15-19
    • /
    • 1999
  • We have investigated the genetic variation in the human apo B mRNA editing protein (apobec-1) gene. Exon 3 of the apobec-1 gene was amplified by polymerase chain reaction. After detection of an additional band by single strand conformational polymorphism (SSCP) analysis, sequencing of the SSCP-shift sample revealed a single-base mutation. The mutation was a CGG transversion at codon 80 resulting in a lleRMet substitution. This substitution was confirmed by restriction fragment length polymorphism analysis since a Pvull site is abolished by the substitution. Population and family studies confirmed that the inheritance of the genotypes for apobec-1 gene polymorphism is controlled by two codominant alleles (P1 and P2). A significant difference in plasma triglyceride was detected among the different apobec-1 genotypes in the CAD patients (P<0.05). Our study could provide the basis for elucidating the interaction between genetic variation of the apobec-1 gene and disorders related to lipid metabolism.

  • PDF

Meta-analysis of Gene Expression Data Identifies Causal Genes for Prostate Cancer

  • Wang, Xiang-Yang;Hao, Jian-Wei;Zhou, Rui-Jin;Zhang, Xiang-Sheng;Yan, Tian-Zhong;Ding, De-Gang;Shan, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.457-461
    • /
    • 2013
  • Prostate cancer is a leading cause of death in male populations across the globe. With the advent of gene expression arrays, many microarray studies have been conducted in prostate cancer, but the results have varied across different studies. To better understand the genetic and biologic mechanisms of prostate cancer, we conducted a meta-analysis of two studies on prostate cancer. Eight key genes were identified to be differentially expressed with progression. After gene co-expression analysis based on data from the GEO database, we obtained a co-expressed gene list which included 725 genes. Gene Ontology analysis revealed that these genes are involved in actin filament-based processes, locomotion and cell morphogenesis. Further analysis of the gene list should provide important clues for developing new prognostic markers and therapeutic targets.

SNPHarvester를 활용한 주요 유전자 상호작용 효과 감명 (Identify Major Gene-Gene Interaction Effects Using SNPHarvester)

  • 이제영;김동철
    • Communications for Statistical Applications and Methods
    • /
    • 제16권6호
    • /
    • pp.915-923
    • /
    • 2009
  • 광범위 유전자 연관(genome-wide association) 연구에서는 무수히 많은 유전자들 중에 인간의 질병에 관련된 유전자를 찾아왔다. 기존의 인간 질병에 관련된 유전자를 찾는 방법에서 이렇게 많은 유전자들 중에서 우수한 유전자를 찾는데 직접 이용할 시에는 계산이 복잡해지고 비용이 많이 들어가며 시간이 오래 걸린다는 단점이 생긴다. 따라서 이번 수많은 유전자들 중 주요 유전자 그룹을 찾는 방법으로 SNPHarvester가 개발되였다. 본 연구에서는 인간의 질병이 아닌 한우의 여러 경제형질에 관련된 우수 유전자를 SNPHarvester를 이용하여 17 개의 SNP들 중에서 우수한 유전자 그룹을 찾았고 의사결정나무(decision tree)를 이용하여 한우의 여러 경제형질을 높일 수 있는 SNP 그룹 내의 우수 유전자형도 함께 규명할 수 있었다.

Promoter Structure and Transcriptional Activity of Human Complement Receptor Type I (CR1) Gene

  • Kim, Jae-Hyun;Lee, Young-Ju;Nam, Ju-Ryoung;Shim, Hee-Bo;Choe, Soo-Young
    • Animal cells and systems
    • /
    • 제7권1호
    • /
    • pp.63-68
    • /
    • 2003
  • Until recently, interest in human complement receptor type I (CR1) has focused on immune complex processing, which contributed to our understanding of regulatory mechanism of complement activation. However, the promoter structure and transcriptional regulation of human CR1 gene has not been clear. To study the unique regulation of human CR1 gene expression, we assessed promoter activity of the $5^1$-flanking region of human CR1 gene using transient transfection and gel mobility shift assays. In this study we demonstrated that NF-Y binds to the inverted CCAAT element and that the functional interaction with protein(s) which bind to the GC-rich motif may be necessary for optimal transcription of human CR1 gene. We also show that sequence elements which located at-95/58 and +45/+50 are important for optimal transcription of CR1 gene.

The Bacteriophage λ DNA Replication Protein P Inhibits the oriC DNA- and ATP-binding Functions of the DNA Replication Initiator Protein DnaA of Escherichia coli

  • Datta, Indrani;Sau, Subrata;Sil, Alok Kumar;Mandal, Mitai C.
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.97-103
    • /
    • 2005
  • Under the condition of expression of $\lambda$ P protein at lethal level, the oriC DNA-binding activity is significantly affected in wild-type E. coli but not in the rpl mutant. In purified system, the $\lambda$ P protein inhibits the binding of both oriC DNA and ATP to the wild-type DnaA protein but not to the rpl DnaA protein. We conclude that the $\lambda$ P protein inhibits the binding of oriC DNA and ATP to the wild-type DnaA protein, which causes the inhibition of host DNA synthesis initiation that ultimately leads to bacterial death. A possible beneficial effect of this interaction of $\lambda$ P protein with E. coli DNA initiator protein DnaA for phage DNA replication has been proposed.

Revealing Regulatory Networks of DNA Repair Genes in S. Cerevisiae

  • Kim, Min-Sung;Lee, Do-Heon;Yi, Gwan-Su
    • Bioinformatics and Biosystems
    • /
    • 제2권1호
    • /
    • pp.12-16
    • /
    • 2007
  • DNA repair means a collection of processes that a cell identifies and corrects damage to genome sequence. The DNA repair processes are important because a genome would not be able to maintain its essential cellular functions without the processes. In this research, we make some gene regulatory networks of DNA repair in S. cerevisiae to know how each gene interacts with others. Two approaches are adapted to make the networks; Bayesian Network and ARACNE. After construction of gene regulatory networks based on the two approaches, the two networks are compared to each other to predict which genes have important roles in the DNA repair processes by finding conserved interactions and looking for hubs. In addition, each interaction between genes in the networks is validated with interaction information in S. cerevisiae genome database to support the meaning of predicted interactions in the networks.

  • PDF

Prediction of hub genes of Alzheimer's disease using a protein interaction network and functional enrichment analysis

  • Wee, Jia Jin;Kumar, Suresh
    • Genomics & Informatics
    • /
    • 제18권4호
    • /
    • pp.39.1-39.8
    • /
    • 2020
  • Alzheimer's disease (AD) is a chronic, progressive brain disorder that slowly destroys affected individuals' memory and reasoning faculties, and consequently, their ability to perform the simplest tasks. This study investigated the hub genes of AD. Proteins interact with other proteins and non-protein molecules, and these interactions play an important role in understanding protein function. Computational methods are useful for understanding biological problems, in particular, network analyses of protein-protein interactions. Through a protein network analysis, we identified the following top 10 hub genes associated with AD: PTGER3, C3AR1, NPY, ADCY2, CXCL12, CCR5, MTNR1A, CNR2, GRM2, and CXCL8. Through gene enrichment, it was identified that most gene functions could be classified as integral to the plasma membrane, G-protein coupled receptor activity, and cell communication under gene ontology, as well as involvement in signal transduction pathways. Based on the convergent functional genomics ranking, the prioritized genes were NPY, CXCL12, CCR5, and CNR2.

Interaction Proteome Analysis of Xanthomonas Hrp Proteins

  • Jang, Mi;Park, Byoung-Chul;Lee, Do-Hee;Bae, Kwang-Hee;Cho, Sa-Yeon;Park, Hyun-Seok;Lee, Baek-Rak;Park, Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.359-363
    • /
    • 2007
  • Because of the importance of the type III protein-secretion system in bacteria-plant interaction, its function in bacterial pathogenesis of plants has been intensively studied. To identity bacterial proteins interacting with Xanthomonas hrp gene products that are involved in pathogenicity, we performed the glutathione-bead binding analysis of Xanthomonas lysates containing GST-tagged Hrp proteins. Analysis of glutathione-bead bound proteins by 1-DE and MALDI-TOF has demonstrated that Avr proteins, RecA, and several components of the type III secretion system interact with HrpB protein. This proteomic approach could provide a powerful tool in finding interaction partners of Hrp proteins whose roles in host-pathogen interaction need further studies.