Browse > Article

Interaction Proteome Analysis of Xanthomonas Hrp Proteins  

Jang, Mi (Proteome Research Laboratory, KRIBB)
Park, Byoung-Chul (Proteome Research Laboratory, KRIBB)
Lee, Do-Hee (Proteome Research Laboratory, KRIBB)
Bae, Kwang-Hee (Proteome Research Laboratory, KRIBB)
Cho, Sa-Yeon (College of Pharmacy, Chung-Ang University)
Park, Hyun-Seok (Department of Computer Science and Engineering, Ewha Womans University)
Lee, Baek-Rak (Department of Microbiology, Inje University)
Park, Sung-Goo (Proteome Research Laboratory, KRIBB)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.2, 2007 , pp. 359-363 More about this Journal
Abstract
Because of the importance of the type III protein-secretion system in bacteria-plant interaction, its function in bacterial pathogenesis of plants has been intensively studied. To identity bacterial proteins interacting with Xanthomonas hrp gene products that are involved in pathogenicity, we performed the glutathione-bead binding analysis of Xanthomonas lysates containing GST-tagged Hrp proteins. Analysis of glutathione-bead bound proteins by 1-DE and MALDI-TOF has demonstrated that Avr proteins, RecA, and several components of the type III secretion system interact with HrpB protein. This proteomic approach could provide a powerful tool in finding interaction partners of Hrp proteins whose roles in host-pathogen interaction need further studies.
Keywords
hrp gene; interaction protein; 1-DE; MALDI-TOF; pathogenesis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Dow, J. M., L. Crossman, K. Findlay, Y. Q. He, J. X. Feng, and J. L. Tang. 2003. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Natl. Acad. Sci. USA 100: 10995-11000
2 Karlin, S., G. M. Weinstock, and V. Brendel. 1995. Bacterial classifications derived from recA protein sequence comparisons. J. Bacteriol. 177: 6881-6893   DOI
3 Kim, M. J., H. J. Chung, S. M. Park, S. G. Park, D. K. Chung, M. S. Yang, and D. H. Kim. 2004. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF)-based cloning of enolase, ENO1, from Cryphonectria parasitica. J. Microbiol. Biotechnol. 14: 620-627
4 Zhu, W., M. M. MaGbanua, and F. F. White. 2000. Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. J. Bacteriol. 182: 1844-1853   DOI   ScienceOn
5 Rossier, O., G. Van den Ackerveken, and U. Bonas. 2000. HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Mol. Microbiol. 38: 828-838   DOI   ScienceOn
6 Leach, J. E., M. L. Rhoads, C. M. Vera Cruz, F. F. White, T. W. Mew, and H. Leung. 1992. Assessment of genetic diversity and population structure of Xanthomonas oryzae pv. oryzae with a repetitive DNA element. Appl. Environ. Microbiol. 58: 2188-2195
7 Kim, J. F. and J. R. Alfano. 2002. Pathogenicity islands and virulence plasmids of bacterial plant pathogens. Curr. Top. Microbiol. Immunol. 264: 127-147
8 Wengelnik, K., C. Marie, M. Russel, and U. Bonas. 1996. Expression and localization of HrpA1, a protein of Xanthomonas campestris pv. vesicatoria essential for pathogenicity and induction of the hypersensitive reaction. J. Bacteriol. 178: 1061-1069   DOI
9 Rossier. O., K. Wengelnik, K. Hahn, and U. Bonas. 1999. The Xanthomonas Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. Proc. Natl. Acad. Sci. USA 96: 9368-9373
10 Bonas, U. 1994. hrp Genes of phytopathogenic bacteria. Curr. Top. Microbiol. Immunol. 192: 79-98
11 Newman, M. A., J. Conrads-Strauch, G. Scofield, M. J. Daniels, and J. M. Dow. 1994. Defense-related gene induction in Brassica campestris in response to defined mutants of Xanthomonas campestris with altered pathogenicity. Mol. Plant Microbe Interact. 7: 553-563   DOI   ScienceOn
12 Alfano, J. R., A. O. Charkowski, W. L. Deng, J. L. Badel, T. Petnicki-Ocwieja, K. van Dijk, and A. Collmer. 2000. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA 97: 4856-4861
13 Anderson, N. L. and N. G. Anderson. 1998. Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis 19: 1853-1861   DOI   ScienceOn
14 Liu, Y., A. Chatterjee, and A. K. Chatterjee. 1994. Nucleotide sequence, organization and expression of rdgA and rdgB genes that regulate pectin lyase production in the plant pathogenic bacterium Erwinia carotovora subsp. carotovora in response to DNA-damaging agents. Mol. Microbiol. 14: 999-1010   DOI   ScienceOn
15 Kearney, B. and B. J. Staskawicz. 1990. Characterization of IS476 and its role in bacterial spot disease of tomato and pepper. J. Bacteriol. 172: 143-148   DOI
16 Fenselan, S., I. Balbo, and U. Bonas. 1992. Determinants of pathogenicity in Xanthomonas campestris pv. vesicatoria are related to proteins involved in secretion in bacterial pathogens of animals. Mol. Plant Microbe Interact. 5: 390-396   DOI   ScienceOn
17 Alfano, J. R. and A. Collmer. 1996. Bacterial pathogens in plants: Life up against wall. Plant Cell 8: 1683-1698   DOI   ScienceOn
18 Choi, N. S., K. H. Yoo, J. H. Hahm, K. S. Yoon, K. T. Chang, B. H. Hyun, P. J. Maeng, and S. H. Kim. 2005. Purification and characterization of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity produced by Bacillus sp. DJ-2 from Doen-jang. J. Microbiol. Biotechnol. 15: 72-79   과학기술학회마을
19 Choi, N. S., S. K. Ju, T. Y. Lee, K. S. Yoon, K. T. Chang, P. J. Maeng, and S. H. Kim. 2005. Miniscale identification and characterization of subtilisins from Bacillus sp. strains. J. Microbiol. Biotechnol. 15: 537-543   과학기술학회마을