• Title/Summary/Keyword: gene prediction

Search Result 295, Processing Time 0.023 seconds

Class prediction of an independent sample using a set of gene modules consisting of gene-pairs which were condition(Tumor, Normal) specific (조건(암, 정상)에 따라 특이적 관계를 나타내는 유전자 쌍으로 구성된 유전자 모듈을 이용한 독립샘플의 클래스예측)

  • Jeong, Hyeon-Iee;Yoon, Young-Mi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.197-207
    • /
    • 2010
  • Using a variety of data-mining methods on high-throughput cDNA microarray data, the level of gene expression in two different tissues can be compared, and DEG(Differentially Expressed Gene) genes in between normal cell and tumor cell can be detected. Diagnosis can be made with these genes, and also treatment strategy can be determined according to the cancer stages. Existing cancer classification methods using machine learning select the marker genes which are differential expressed in normal and tumor samples, and build a classifier using those marker genes. However, in addition to the differences in gene expression levels, the difference in gene-gene correlations between two conditions could be a good marker in disease diagnosis. In this study, we identify gene pairs with a big correlation difference in two sets of samples, build gene classification modules using these gene pairs. This cancer classification method using gene modules achieves higher accuracy than current methods. The implementing clinical kit can be considered since the number of genes in classification module is small. For future study, Authors plan to identify novel cancer-related genes with functionality analysis on the genes in a classification module through GO(Gene Ontology) enrichment validation, and to extend the classification module into gene regulatory networks.

Prediction of residual compressive strength of fly ash based concrete exposed to high temperature using GEP

  • Tran M. Tung;Duc-Hien Le;Olusola E. Babalola
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.111-121
    • /
    • 2023
  • The influence of material composition such as aggregate types, addition of supplementary cementitious materials as well as exposed temperature levels have significant impacts on concrete residual mechanical strength properties when exposed to elevated temperature. This study is based on data obtained from literature for fly ash blended concrete produced with natural and recycled concrete aggregates to efficiently develop prediction models for estimating its residual compressive strength after exposure to high temperatures. To achieve this, an extensive database that contains different mix proportions of fly ash blended concrete was gathered from published articles. The specific design variables considered were percentage replacement level of Recycled Concrete Aggregate (RCA) in the mix, fly ash content (FA), Water to Binder Ratio (W/B), and exposed Temperature level. Thereafter, a simplified mathematical equation for the prediction of concrete's residual compressive strength using Gene Expression Programming (GEP) was developed. The relative importance of each variable on the model outputs was also determined through global sensitivity analysis. The GEP model performance was validated using different statistical fitness formulas including R2, MSE, RMSE, RAE, and MAE in which high R2 values above 0.9 are obtained in both the training and validation phase. The low measured errors (e.g., mean square error and mean absolute error are in the range of 0.0160 - 0.0327 and 0.0912 - 0.1281 MPa, respectively) in the developed model also indicate high efficiency and accuracy of the model in predicting the residual compressive strength of fly ash blended concrete exposed to elevated temperatures.

Allelic Frequencies of 20 Visible Phenotype Variants in the Korean Population

  • Lim, Ji Eun;Oh, Bermseok
    • Genomics & Informatics
    • /
    • v.11 no.2
    • /
    • pp.93-96
    • /
    • 2013
  • The prediction of externally visible characteristics from DNA has been studied for forensic genetics over the last few years. Externally visible characteristics include hair, skin, and eye color, height, and facial morphology, which have high heritability. Recent studies using genome-wide association analysis have identified genes and variations that correlate with human visible phenotypes and developed phenotype prediction programs. However, most prediction models were constructed and validated based on genotype and phenotype information on Europeans. Therefore, we need to validate prediction models in diverse ethnic populations. In this study, we selected potentially useful variations for forensic science that are associated with hair and eye color, iris pattern, and facial morphology, based on previous studies, and analyzed their frequencies in 1,920 Koreans. Among 20 single nucleotide polymorphisms (SNPs), 10 SNPs were polymorphic, 6 SNPs were very rare (minor allele frequency < 0.005), and 4 SNPs were monomorphic in the Korean population. Even though the usability of these SNPs should be verified by an association study in Koreans, this study provides 10 potential SNP markers for forensic science for externally visible characteristics in the Korean population.

A Study On the Application Methods of a Support Vector Machine for Gene Promoter Prediction. (유전자 프로모터 예측을 위한 Support Vector Machine의 응용 방법에 대한 연구)

  • Kim, Ki-Bong
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.714-718
    • /
    • 2007
  • The high-throughput sequencing of a lot of genomes has resulted in the relatively rapid accumulation of an enormous amount of genomic sequence data. In this context, the problem posed by the detection of promoters in genomic DNA sequences via computational methods has attracted considerable attention in recent years since exact promoter prediction can give a clue to the elucidation of overall genetic networks. In this study, applications of support vector machine(SVM) to promoter prediction are explored to show a right approaches to discriminate between promoter and non-promoter regions by means of SVM. The results of various experiments show that encoding method, encoding region and learning data constitution can play an important role in the performance of SVM.

New Approach to Predict microRNA Gene by using data Compression technique

  • Kim, Dae-Won;Yang, Joshua SungWoo;Kim, Pan-Jun;Chu, In-Sun;Jeong, Ha-Woong;Park, Hong-Seog
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.361-365
    • /
    • 2005
  • Over the past few years, the complex and subtle roles of microRNA (miRNA) in gene regulation have been increasingly appreciated. Computational approaches have played one of important roles in identifying miRNAs from plant and animals, as well as in predicting their putative gene target. We present a new approach of comprehensive analysis of the evolutionarily conserved element scores and applied data compression technique to detect putative miRNA genes. We used the evolutionarily conserved elements [19] (see more detail on method and material) to calculate for base-by-base along the candidate pre-miRNA gene region by detecting common conserved pattern from target sequence. We applied the data compression technique [20] to detect unknown miRNA genes. This zipping method devises, without loss of generality with respect to the nature of the character strings, a method to measure the similarity between the strings under consideration [20]. Our experience to using our new computational method for detecting miRNA gene identification (or miRNA gene prediction) has been stratified and we were able to find 28 putative miRNA genes.

  • PDF

Classification of Ovarian Cancer Microarray Data based on Intelligent Systems with Marker gene (선별 시스템 기반 표지 유전자를 포함한 난소암 마이크로어레이 데이터 분류)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.747-752
    • /
    • 2011
  • Microarray classification typically possesses two striking attributes: (1) classifier design and error estimation are based on remarkably small samples and (2) cross-validation error estimation is employed in the majority of the papers. A Microarray data of ovarian cancer consists of the expressions of thens of thousands of genes, and there is no systematic procedure to analyze this information instantaneously. In this paper, gene markers are selected by ranking genes according to statistics, popular classification rules - linear discriminant analysis, k-nearest-neighbor and decision trees - has been performed comparing classification accuracy of data selecting gene markers and not selecting gene markers. The Result that apply linear classification analysis at Microarray data set including marker gene that are selected using ANOVA method represent the highest classification accuracy of 97.78% and the lowest prediction error estimate.

Classification Prediction Error Estimation System of Microarray for a Comparison of Resampling Methods Based on Multi-Layer Perceptron (다층퍼셉트론 기반 리 샘플링 방법 비교를 위한 마이크로어레이 분류 예측 에러 추정 시스템)

  • Park, Su-Young;Jeong, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.534-539
    • /
    • 2010
  • In genomic studies, thousands of features are collected on relatively few samples. One of the goals of these studies is to build classifiers to predict the outcome of future observations. There are three inherent steps to build classifiers: a significant gene selection, model selection and prediction assessment. In the paper, with a focus on prediction assessment, we normalize microarray data with quantile-normalization methods that adjust quartile of all slide equally and then design a system comparing several methods to estimate 'true' prediction error of a prediction model in the presence of feature selection and compare and analyze a prediction error of them. LOOCV generally performs very well with small MSE and bias, the split sample method and 2-fold CV perform with small sample size very pooly. For computationally burdensome analyses, 10-fold CV may be preferable to LOOCV.

Age Prediction based on the Transcriptome of Human Dermal Fibroblasts through Interval Selection (피부섬유모세포 전사체 정보를 활용한 구간 선택 기반 연령 예측)

  • Seok, Ho-Sik
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.494-499
    • /
    • 2022
  • It is reported that genome-wide RNA-seq profiles has potential as biomarkers of aging. A number of researches achieved promising prediction performance based on gene expression profiles. We develop an age prediction method based on the transcriptome of human dermal fibroblasts by selecting a proper age interval. The proposed method executes multiple rules in a sequential manner and a rule utilizes a classifier and a regression model to determine whether a given test sample belongs to the target age interval of the rule. If a given test sample satisfies the selection condition of a rule, age is predicted from the associated target age interval. Our method predicts age to a mean absolute error of 5.7 years. Our method outperforms prior best performance of mean absolute error of 7.7 years achieved by an ensemble based prediction method. We observe that it is possible to predict age based on genome-wide RNA-seq profiles but prediction performance is not stable but varying with age.

Current Status of Comparative Mapping in Livestock

  • Lee, J.H.;Moran, C.;Park, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.10
    • /
    • pp.1411-1420
    • /
    • 2003
  • Comparative maps, representing chromosomal locations of homologous genes in different species, are useful sources of information for identifying candidate disease genes and genes determining complex traits. They facilitate gene mapping and linkage prediction in other species, and provide information on genome organization and evolution. Here, the current gene mapping and comparative mapping status of the major livestock species are presented. Two techniques were widely used in comparative mapping: FISH (Fluorescence In Situ Hybridization) and PCR-based mapping using somatic cell hybrid (SCH) or radiation hybrid (RH) panels. New techniques, using, for example, ESTs (Expressed Sequence Tags) or CASTS (Comparatively Anchored Sequence Tagged Sites), also have been developed as useful tools for analyzing comparative genome organization in livestock species, further enabling accurate transfer of valuable information from one species to another.

Predicting tissue-specific expressions based on sequence characteristics

  • Paik, Hyo-Jung;Ryu, Tae-Woo;Heo, Hyoung-Sam;Seo, Seung-Won;Lee, Do-Heon;Hur, Cheol-Goo
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.250-255
    • /
    • 2011
  • In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.