• 제목/요약/키워드: gene ontology analysis

검색결과 244건 처리시간 0.03초

Microarray를 이용한 pipernonaline의 인간 전립선 암세포에 대한 기능 조절 분석 (Regulation of Pipernonaline on Biological Functions of Human Prostate Cancer Cells Based on Microarray Analysis)

  • 김상헌;김광연;유선녕;박슬기;곽인석;이문수;방병호;전성식;안순철
    • 생명과학회지
    • /
    • 제22권11호
    • /
    • pp.1552-1557
    • /
    • 2012
  • Pipernonaline은 후추나무과에 속하는 필발(Piper longum Linn.)의 유도체로서 전립선 암세포에 대한 항암활성이 보고되고 있다. 하지만 실제 암세포 내에서 생물학적 정보를 가진 수 많은 유전자들에 대한 발현이 어떻게 이루어지고 있는지 알려진 바가 없다. 본 연구에 사용된 microarray 분석은 동시에 수 만개 이상의 유전자 발현양상을 한번에 관찰할 수 있는 기술로서 특정 질병의 유전학적 특성과 기전 연구를 더 광범위하게 연구 할 수 있는 기술이다. 본 연구에서는 전립선 암세포인 PC-3 세포에 pipernonaline을 처리하여 cDNA microarray를 실시하였다. 이후, DAVID database를 이용하여 gene ontology의 Biological Process를 분석하여 세포사멸과 세포주기, 세포성장 및 증식에 관련된 유전자들을 우선적으로 분석하였다. 그 결과, 세포주기관련 256개, 세포사멸관련 197개, 세포성장 및 증식관련에 154개의 유전자가 확인 되었다. 이러한 결과는 pipernonaline은 전립선 암세포 내에 존재하는 생물학적 신호전달체계에 관련된 유전자 발현을 조절함으로써 항암활성을 나타내 것을 알 수 있었고, 이후 이러한 microarray의 추가적인 분석은 암세포 내 새로운 유전자의 탐색 및 메커니즘을 규명하는데 유용하게 사용할 수 있을 것으로 사료된다.

동적인 개념을 적용한 알츠하이머 질병 네트워크의 특성 분석 (Characterization of the Alzheimer's disease-related network based on the dynamic network approach)

  • 김만선;김정래
    • 한국지능시스템학회논문지
    • /
    • 제25권6호
    • /
    • pp.529-535
    • /
    • 2015
  • 지금까지 생체 네트워크 분석 연구는 정적(static)인 개념으로만 다루어졌다. 그러나 실제 생명현상이 발생하는 세포 내에서는 세포의 상태 및 외부 환경에 따라 일부 단백질과 그 상호작용만이 선택적으로 활성화된다. 따라서 생체 네트워크의 구조가 시간의 흐름에 따라 변화하는 동적(dynamic)인 개념이 적용되어야 하며, 이런 개념은 질병의 진행 추이를 분석하는데 효율적이다. 본 논문에서는 동적인 네트워크 방법을 알츠하이머 질병에 적용하여 질병이 진행되는 단계에 따라 변화하는 단백질 상호작용 네트워크의 구조적, 기능적 특징에 대하여 분석하고자 한다. 우선, 유전자 발현데이터를 기반으로 각 질병의 진행 상태에 따른 부분 네트워크(정상, 초기, 중기, 말기)를 구축하였다. 이를 기반으로, 네트워크의 구조적 특성 분석을 수행하였다. 또한 기능적 특성 분석을 위해 유전자 군집(module)을 탐색하고, 군집별 유전자 기능(Gene Ontology) 분석을 수행했다. 그 결과, 네트워크의 특성들은 각 질병의 단계와 잘 대응되며, 동적 네트워크 분석법이 중요한 생물학적 이벤트를 설명하는데 이용될 수 있음을 보였다. 결론적으로 제안된 연구 방법을 통하여 그동안 알려지지 않았던 질병유발에 관련된 주요 네트워크 변화를 관측할 수 있고, 질병에 관여하는 복잡한 분자 수준의 발생 기작과 진행 과정을 이해하는데 중요한 정보를 획득할 수 있다.

아카풀코나리에서 Differential Slot Blot을 이용한 약발현 유전자 목록작성 (Cataloguing of Anther Expressed Genes through Differential Slot Blot in Oriental Lily (Lilium Oriental Hybrid 'Acapulco'))

  • 서은정;유희주;한봉희;임용표;정미정;이성곤;김동헌;장안철;예병우
    • 원예과학기술지
    • /
    • 제31권5호
    • /
    • pp.598-606
    • /
    • 2013
  • 약은 생식과 화형을 결정짓는 꽃의 주요한 기관 중 하나이다. 오리엔탈나리인 아카풀코로부터 만든 약 특이적 cDNA library로부터 2000개의 ESTs를 무작위로 선발하였다. 잎과 약을 cDNA 탐침으로 이용한 differential slot blot이 약에서 발현되는 클론들을 얻기 위해 사용되었으며 570개의 비반복적 ESTs를 얻었고 염기서열분석을 하였다. BLASTX 알고리즘을 이용하여 GenBank에 비교해서 191개의 클론이 의미 있는 유사성을 보였지만 나머지(66.5%)는 기존에 보고된 염기서열에 확인되지 않았다. Gene ontology(GO) annotation에 따른 기능분류결과 대체적으로 세포와 세포구성 부분에서 주요하게 단백질이 확인되었다. 7개의 다른 기관과 발달 단계에서 전사체 분석은 약특이적일 적으로 추정되는 30개의 클론을 가지고 노던혼성화반응을 이용하여 수행하였다. 이러한 결과는 differential slot blot을 이용하여 약에 발현되는 유전자를 선별하는 것이 매우 효과적인 방법인 것으로 간주되며 또한 지금의 연구가 앞으로 나리의 화분을 포함한 약에 대한 기초정보를 제공할 수 있을 것으로 생각한다.

Time-dependent proteomic and genomic alterations in Toll-like receptor-4-activated human chondrocytes: increased expression of lamin A/C and annexins

  • Ha, Seung Hee;Kim, Hyoung Kyu;Nguyen, Thi Tuyet Anh;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.531-546
    • /
    • 2017
  • Activation of Toll-like receptor-4 (TLR-4) in articular chondrocytes increases the catabolic compartment and leads to matrix degradation during the development of osteoarthritis. In this study, we determined the proteomic and genomic alterations in human chondrocytes during lipopolysaccharide (LPS)-induced inflammation to elucidate the underlying mechanisms and consequences of TLR-4 activation. Human chondrocytes were cultured with LPS for 12, 24, and 36 h to induce TLR-4 activation. The TLR-4-induced inflammatory response was confirmed by real-time PCR analysis of increased interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor alpha ($TNF-{\alpha}$) expression levels. In TLR-4-activated chondrocytes, proteomic changes were determined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectroscopy analysis, and genomic changes were determined by microarray and gene ontology analyses. Proteomics analysis identified 26 proteins with significantly altered expression levels; these proteins were related to the cytoskeleton and oxidative stress responses. Gene ontology analysis indicated that LPS treatment altered specific functional pathways including 'chemotaxis', 'hematopoietic organ development', 'positive regulation of cell proliferation', and 'regulation of cytokine biosynthetic process'. Nine of the 26 identified proteins displayed the same increased expression patterns in both proteomics and genomics analyses. Western blot analysis confirmed the LPS-induced increases in expression levels of lamin A/C and annexins 4/5/6. In conclusion, this study identified the time-dependent genomic, proteomic, and functional pathway alterations that occur in chondrocytes during LPS-induced TLR-4 activation. These results provide valuable new insights into the underlying mechanisms that control the development and progression of osteoarthritis.

Epigenetic Silencing of CHOP Expression by the Histone Methyltransferase EHMT1 Regulates Apoptosis in Colorectal Cancer Cells

  • Kim, Kwangho;Ryu, Tae Young;Lee, Jinkwon;Son, Mi-Young;Kim, Dae-Soo;Kim, Sang Kyum;Cho, Hyun-Soo
    • Molecules and Cells
    • /
    • 제45권9호
    • /
    • pp.622-630
    • /
    • 2022
  • Colorectal cancer (CRC) has a high mortality rate among cancers worldwide. To reduce this mortality rate, chemotherapy (5-fluorouracil, oxaliplatin, and irinotecan) or targeted therapy (bevacizumab, cetuximab, and panitumumab) has been used to treat CRC. However, due to various side effects and poor responses to CRC treatment, novel therapeutic targets for drug development are needed. In this study, we identified the overexpression of EHMT1 in CRC using RNA sequencing (RNA-seq) data derived from TCGA, and we observed that knocking down EHMT1 expression suppressed cell growth by inducing cell apoptosis in CRC cell lines. In Gene Ontology (GO) term analysis using RNA-seq data, apoptosis-related terms were enriched after EHMT1 knockdown. Moreover, we identified the CHOP gene as a direct target of EHMT1 using a ChIP (chromatin immunoprecipitation) assay with an anti-histone 3 lysine 9 dimethylation (H3K9me2) antibody. Finally, after cotransfection with siEHMT1 and siCHOP, we again confirmed that CHOP-mediated cell apoptosis was induced by EHMT1 knockdown. Our findings reveal that EHMT1 plays a key role in regulating CRC cell apoptosis, suggesting that EHMT1 may be a therapeutic target for the development of cancer inhibitors.

Comparative Analysis of Expressed Sequence Tags from Flammulina velutipes at Different Developmental Stages

  • Joh, Joong-Ho;Kim, Kyung-Yun;Lim, Jong-Hyun;Son, Eun-Suk;Park, Hye-Ran;Park, Young-Jin;Kong, Won-Sik;Yoo, Young-Bok;Lee, Chang-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권8호
    • /
    • pp.774-780
    • /
    • 2009
  • Flammulina velutipes is a popular edible basidiomycete mushroom found in East Asia and is commonly known as winter mushroom. Mushroom development showing dramatic morphological changes by different environmental factors is scientifically and commercially interesting. To create a genetic database and isolate genes regulated during mushroom development, cDNA libraries were constructed from three developmental stages of mycelium, primordium, and fruit body in F. velutipes. We generated a total of 5,431 expressed sequence tags (ESTs) from randomly selected clones from the three cDNA libraries. Of these, 3,332 different unique genes (unigenes) were consistent with 2,442 (73%) singlets and 890 (27%) contigs. This corresponds to a redundancy of 39%. Using a homology search in the gene ontology database, the EST unigenes were classified into the three categories of molecular function (28%), biological process (29%), and cellular component (6%). Comparative analysis found great variations in the unigene expression pattern among the three different unigene sets generated from the cDNA libraries of mycelium, primordium, and fruit body. The 19-34% of total unigenes were unique to each unigene set and only 3% were shared among all three unigene sets. The unique and common representation in F. velutipes unigenes from the three different cDNA libraries suggests great differential gene expression profiles during the different developmental stages of F. velutipes mushroom.

Expression profile of mitochondrial voltage-dependent anion channel-1 (VDAC1) influenced genes is associated with pulmonary hypertension

  • Zhou, Tong;Tang, Haiyang;Han, Ying;Fraidenburg, Dustin;Kim, Young-Won;Lee, Donghee;Choi, Jeongyoon;Bang, Hyoweon;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권3호
    • /
    • pp.353-360
    • /
    • 2017
  • Several human diseases have been associated with mitochondrial voltage-dependent anion channel-1 (VDAC1) due to its role in calcium ion transportation and apoptosis. Recent studies suggest that VDAC1 may interact with endothelium-dependent nitric oxide synthase (eNOS). Decreased VDAC1 expression may limit the physical interaction between VDAC1 and eNOS and thus impair nitric oxide production, leading to cardiovascular diseases, including pulmonary arterial hypertension (PAH). In this report, we conducted meta-analysis of genome-wide expression data to identify VDAC1 influenced genes implicated in PAH pathobiology. First, we identified the genes differentially expressed between wild-type and Vdac1 knockout mouse embryonic fibroblasts in hypoxic conditions. These genes were deemed to be influenced by VDAC1 deficiency. Gene ontology analysis indicates that the VDAC1 influenced genes are significantly associated with PAH pathobiology. Second, a molecular signature derived from the VDAC1 influenced genes was developed. We suggest that, VDAC1 has a protective role in PAH and the gene expression signature of VDAC1 influenced genes can be used to i) predict severity of pulmonary hypertension secondary to pulmonary diseases, ii) differentiate idiopathic pulmonary artery hypertension (IPAH) patients from controls, and iii) differentiate IPAH from connective tissue disease associated PAH.

Identifying Differentially Expressed Genes and Small Molecule Drugs for Prostate Cancer by a Bioinformatics Strategy

  • Li, Jian;Xu, Ya-Hong;Lu, Yi;Ma, Xiao-Ping;Chen, Ping;Luo, Shun-Wen;Jia, Zhi-Gang;Liu, Yang;Guo, Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5281-5286
    • /
    • 2013
  • Purpose: Prostate cancer caused by the abnormal disorderly growth of prostatic acinar cells is the most prevalent cancer of men in western countries. We aimed to screen out differentially expressed genes (DEGs) and explore small molecule drugs for prostate cancer. Materials and Methods: The GSE3824 gene expression profile of prostate cancer was downloaded from Gene Expression Omnibus database which including 21 normal samples and 18 prostate cancer cells. The DEGs were identified by Limma package in R language and gene ontology and pathway enrichment analyses were performed. In addition, potential regulatory microRNAs and the target sites of the transcription factors were screened out based on the molecular signature database. In addition, the DEGs were mapped to the connectivity map database to identify potential small molecule drugs. Results: A total of 6,588 genes were filtered as DEGs between normal and prostate cancer samples. Examples such as ITGB6, ITGB3, ITGAV and ITGA2 may induce prostate cancer through actions on the focal adhesion pathway. Furthermore, the transcription factor, SP1, and its target genes ARHGAP26 and USF1 were identified. The most significant microRNA, MIR-506, was screened and found to regulate genes including ITGB1 and ITGB3. Additionally, small molecules MS-275, 8-azaguanine and pyrvinium were discovered to have the potential to repair the disordered metabolic pathways, abd furthermore to remedy prostate cancer. Conclusions: The results of our analysis bear on the mechanism of prostate cancer and allow screening for small molecular drugs for this cancer. The findings have the potential for future use in the clinic for treatment of prostate cancer.

Comparative transcriptome analysis of heat stress responsiveness between two contrasting ginseng cultivars

  • Jayakodi, Murukarthick;Lee, Sang-Choon;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.572-579
    • /
    • 2019
  • Background: Panax ginseng has been used in traditional medicine to strengthen the body and mental well-being of humans for thousands of years. Many elite ginseng cultivars have been developed, and ginseng cultivation has become well established during the last century. However, heat stress poses an important threat to the growth and sustainable production of ginseng. Efforts have been made to study the effects of high temperature on ginseng physiology, but knowledge of the molecular responses to heat stress is still limited. Methods: We sequenced the transcriptomes (RNA-Seq) of two ginseng cultivars, Chunpoong (CP) and Yunpoong (YP), which are sensitive and resistant to heat stress, respectively, after 1- and 3-week heat treatments. Differential gene expression and gene ontology enrichment along with profiled chlorophyll contents were performed. Results: CP is more sensitive to heat stress than YP and exhibited a lower chlorophyll content than YP. Moreover, heat stress reduced the chlorophyll content more rapidly in CP than in YP. A total of 329 heat-responsive genes were identified. Intriguingly, genes encoding chlorophyll a/b-binding proteins, WRKY transcription factors, and fatty acid desaturase were predominantly responsive during heat stress and appeared to regulate photosynthesis. In addition, a genome-wide scan of photosynthetic and sugar metabolic genes revealed reduced transcription levels for ribulose 1,5-bisphosphate carboxylase/oxygenase under heat stress, especially in CP, possibly attributable to elevated levels of soluble sugars. Conclusion: Our comprehensive genomic analysis reveals candidate loci/gene targets for breeding and functional studies related to developing high temperature-tolerant ginseng varieties.

Microarray 분석을 이용한 대하 (Fenneropenaeus chinensis) 유생의 카드뮴 단기 노출에 따른 유전자변화 (Acute Toxicity of Cadmium on Gene Expression Profiling of Fleshy Shrimp, Fenneropenaeus Chinensis Postlarvae Using a cDNA Microarray)

  • 김수경;치오궈;윤종화;장인권
    • 한국환경과학회지
    • /
    • 제24권5호
    • /
    • pp.623-631
    • /
    • 2015
  • Microarray technology provides a unique tool for the determination of gene expression at the level of messenger RNA (mRNA). This study, the mRNA expression profiles provide insight into the mechanism of action of cadmium in Fleshy shrimp (Fenneropenaeus chinensis). The ability of genomic technologies was contributed decisively to development of new molecular biomarkers and to the determination of new possible gene targets. Also, it can be approach for monitoring of trace metal using oligo-chip microarray-based in potential model marine user level organisms. 15K oligo-chip for F. chinensis that include mostly unique sets of genes from cDNA sequences was developed. A total of 13,971 spots (1,181 mRNAs up- regulated and 996 down regulated) were identified to be significantly expressed on microarray by hierarchical clustering of genes after exposure to cadmium for different conditions (Cd24-5000 and Cd48-1000). Most of the changes of mRNA expression were observed at the long time and low concentration exposure of Cd48-1000. But, gene ontology analysis (GO annotation) were no significant different between experiments groups. It was observed that mRNA expression of main genes involved in metabolism, cell component, molecular binding and catalytic function. It was suggested that cadmium inhibited metabolism and growth of F. chinensis.