• Title/Summary/Keyword: gene network

Search Result 552, Processing Time 0.032 seconds

Classification in Different Genera by Cytochrome Oxidase Subunit I Gene Using CNN-LSTM Hybrid Model

  • Meijing Li;Dongkeun Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.159-166
    • /
    • 2023
  • The COI gene is a sequence of approximately 650 bp at the 5' terminal of the mitochondrial Cytochrome c Oxidase subunit I (COI) gene. As an effective DeoxyriboNucleic Acid (DNA) barcode, it is widely used for the taxonomic identification and evolutionary analysis of species. We created a CNN-LSTM hybrid model by combining the gene features partially extracted by the Long Short-Term Memory ( LSTM ) network with the feature maps obtained by the CNN. Compared to K-Means Clustering, Support Vector Machines (SVM), and a single CNN classification model, after training 278 samples in a training set that included 15 genera from two orders, the CNN-LSTM hybrid model achieved 94% accuracy in the test set, which contained 118 samples. We augmented the training set samples and four genera into four orders, and the classification accuracy of the test set reached 100%. This study also proposes calculating the cosine similarity between the training and test sets to initially assess the reliability of the predicted results and discover new species.

Identification of Specific Gene Modules in Mouse Lung Tissue Exposed to Cigarette Smoke

  • Xing, Yong-Hua;Zhang, Jun-Ling;Lu, Lu;Li, De-Guan;Wang, Yue-Ying;Huang, Song;Li, Cheng-Cheng;Zhang, Zhu-Bo;Li, Jian-Guo;Xu, Guo-Shun;Meng, Ai-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4251-4256
    • /
    • 2015
  • Background: Exposure to cigarette may affect human health and increase risk of a wide range of diseases including pulmonary diseases, such as chronic obstructive pulmonary disease (COPD), asthma, lung fibrosis and lung cancer. However, the molecular mechanisms of pathogenesis induced by cigarettes still remain obscure even with extensive studies. With systemic view, we attempted to identify the specific gene modules that might relate to injury caused by cigarette smoke and identify hub genes for potential therapeutic targets or biomarkers from specific gene modules. Materials and Methods: The dataset GSE18344 was downloaded from the Gene Expression Omnibus (GEO) and divided into mouse cigarette smoke exposure and control groups. Subsequently, weighted gene co-expression network analysis (WGCNA) was used to construct a gene co-expression network for each group and detected specific gene modules of cigarette smoke exposure by comparison. Results: A total of ten specific gene modules were identified only in the cigarette smoke exposure group but not in the control group. Seven hub genes were identified as well, including Fip1l1, Anp32a, Acsl4, Evl, Sdc1, Arap3 and Cd52. Conclusions: Specific gene modules may provide better understanding of molecular mechanisms, and hub genes are potential candidates of therapeutic targets that may possible improve development of novel treatment approaches.

Potential biomarkers and signaling pathways associated with the pathogenesis of primary salivary gland carcinoma: a bioinformatics study

  • Bayat, Zeynab;Ahmadi-Motamayel, Fatemeh;Salimi Parsa, Mohadeseh;Taherkhani, Amir
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.42.1-42.17
    • /
    • 2021
  • Salivary gland carcinoma (SGC) is rare cancer, constituting 6% of neoplasms in the head and neck area. The most responsible genes and pathways involved in the pathology of this disorder have not been fully understood. We aimed to identify differentially expressed genes (DEGs), the most critical hub genes, transcription factors, signaling pathways, and biological processes (BPs) associated with the pathogenesis of primary SGC. The mRNA dataset GSE153283 in the Gene Expression Omnibus database was re-analyzed for determining DEGs in cancer tissue of patients with primary SGC compared to the adjacent normal tissue (adjusted p-value < 0.001; |Log2 fold change| > 1). A protein interaction map (PIM) was built, and the main modules within the network were identified and focused on the different pathways and BP analyses. The hub genes of PIM were discovered, and their associated gene regulatory network was built to determine the master regulators involved in the pathogenesis of primary SGC. A total of 137 genes were found to be differentially expressed in primary SGC. The most significant pathways and BPs that were deregulated in the primary disease condition were associated with the cell cycle and fibroblast proliferation procedures. TP53, EGF, FN1, NOTCH1, EZH2, COL1A1, SPP1, CDKN2A, WNT5A, PDGFRB, CCNB1, and H2AFX were demonstrated to be the most critical genes linked with the primary SGC. SPIB, FOXM1, and POLR2A significantly regulate all the hub genes. This study illustrated several hub genes and their master regulators that might be appropriate targets for the therapeutic aims of primary SGC.

Network Pharmacological Analysis of Cnidii Fructus Treatment for Gastritis (벌사상자의 위염 치료 적용에 대한 네트워크 약리학적 분석)

  • Young-Sik Kim;Seungho Lee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.22-26
    • /
    • 2024
  • The purpose of this study was to identify the applicability, main compounds, and target genes of Cnidii Fructus (CF) in the treatment of gastritis using network pharmacology. The compounds in CF were searched in Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and a database of medicinal materials and chemical compounds in Northeast Asian traditional medicine (TM-MC). The target gene information of the compounds was collected from pubchem and cross-compared with the gastritis-related target gene information collected from Genecard to derive the target genes. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on the derived target genes. Afterwards, network analysis between compounds and disease target genes was performed using cytoscape. We identified 121 active compounds and 139 target genes associated with gastritis. Pathways derived from the GO biological process and KEGG pathway DB primarily focus on target genes related to inflammation (IL-6, IL-8, TNF production, NF-κB transcription factor activity, and NF-κB signaling pathway) and cell death (PI3K-Akt, FoxO). Major targets for CF treatment of gastritis include TP53, TNF, BCL2, EGFR, NFKB1, ABCB1, PPARG, PTGS2, IL6, IL1B, and SOD1, along with major compounds such as coumarin, osthol, hexadecanoic acid, oleic acid, linoleic acid, and stigmasterol. This study provided CF's applicability for gastritis, related compounds, and target information. Evaluating CF's effectiveness in a preclinical gastritis model suggests its potential use in clinical practice for digestive system diseases.

Network pharmacology-based prediction of efficacy and mechanism of Myrrha acting on Allergic Rhinitis (네트워크 약리학을 활용한 알레르기 비염에서의 몰약의 치료 효능 및 기전 예측)

  • Yebin Lim;Bitna Kweon;Dong-Uk Kim;Gi-Sang Bae
    • The Journal of Korean Medicine
    • /
    • v.45 no.1
    • /
    • pp.114-125
    • /
    • 2024
  • Objectives: Network pharmacology is an analysis method that explores drug-centered efficacy and mechanism by constructing a compound-target-disease network based on system biology, and is attracting attention as a methodology for studying herbal medicine that has the characteristics for multi-compound therapeutics. Thus, we investigated the potential functions and pathways of Myrrha on Allergic Rhinitis (AR) via network pharmacology analysis and molecular docking. Methods: Using public databases and PubChem database, compounds of Myrrha and their target genes were collected. The putative target genes of Myrrha and known target genes of AR were compared and found the correlation. Then, the network was constructed using STRING database, and functional enrichment analysis was conducted based on the Gene Ontology (GO) Biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways. Binding-Docking stimulation was performed using CB-Dock. Results: The result showed that total 3 compounds and 55 related genes were gathered from Myrrha. 33 genes were interacted with AR gene set, suggesting that the effects of Myrrha are closely related to AR. Target genes of Myrrha are considerably associated with various pathways including 'Fc epsilon RI signaling pathway' and 'JAK-STAT signaling pathway'. As a result of blinding docking, AKT1, which is involved in both mechanisms, had high binding energies for abietic acid and dehydroabietic acid, which are components of Myrrha. Conclusion: Through a network pharmacological method, Myrrha was predicted to have high relevance with AR by regulating AKT1. This study could be used as a basis for studying therapeutic effects of Myrrha on AR.

Characterization of a Novel Gene in the Extended MHC Region of Mouse, NG29/Cd320, a Homolog of the Human CD320

  • Park, Hyo-Jin;Kim, Ji-Yeon;Jung, Kyung-In;Kim, Tae-Jin
    • IMMUNE NETWORK
    • /
    • v.9 no.4
    • /
    • pp.138-146
    • /
    • 2009
  • Background: The MHC region of the chromosome contains a lot of genes involved in immune responses. Here we have investigated the mouse NG29/Cd320 gene in the centrometrically extended MHC region of chromosome 17. Methods: We cloned the NG29 gene by RT-PCR and confirmed the tissue distribution of its gene expression by northern blot hybridization. We generated the NG29 gene expression constructs and polyclonal antibody against the NG29 protein to perform the immunofluorescence, immunoprecipitation and flow cytometric analysis. Results: The murine NG29 gene and its human homologue, the CD320/8D6 gene, were similar in the gene structure and tissue expression patterns. We cloned the NG29 gene and confirmed its expression in plasma membrane and intracellular compartments by transfecting its expresssion constructs into HEK 293T cells. The immunoprecipitation studies with rabbit polyclonal antibody raised against the NG29-NusA fusion protein indicated that NG29 protein was a glycoprotein of about 45 kDa size. A flow cytometric analysis also showed the NG29 expression on the surface of Raw 264.7 macrophage cell line. Conclusion: These findings suggested that NG29 gene in mouse extended MHC class II region was the orthologue of human CD320 gene even though human CD320/8D6 gene was located in non-MHC region, chromosome 19p13.

Integrative Analysis of Microarray Data with Gene Ontology to Select Perturbed Molecular Functions using Gene Ontology Functional Code

  • Kim, Chang-Sik;Choi, Ji-Won;Yoon, Suk-Joon
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.122-130
    • /
    • 2009
  • A systems biology approach for the identification of perturbed molecular functions is required to understand the complex progressive disease such as breast cancer. In this study, we analyze the microarray data with Gene Ontology terms of molecular functions to select perturbed molecular functional modules in breast cancer tissues based on the definition of Gene ontology Functional Code. The Gene Ontology is three structured vocabularies describing genes and its products in terms of their associated biological processes, cellular components and molecular functions. The Gene Ontology is hierarchically classified as a directed acyclic graph. However, it is difficult to visualize Gene Ontology as a directed tree since a Gene Ontology term may have more than one parent by providing multiple paths from the root. Therefore, we applied the definition of Gene Ontology codes by defining one or more GO code(s) to each GO term to visualize the hierarchical classification of GO terms as a network. The selected molecular functions could be considered as perturbed molecular functional modules that putatively contributes to the progression of disease. We evaluated the method by analyzing microarray dataset of breast cancer tissues; i.e., normal and invasive breast cancer tissues. Based on the integration approach, we selected several interesting perturbed molecular functions that are implicated in the progression of breast cancers. Moreover, these selected molecular functions include several known breast cancer-related genes. It is concluded from this study that the present strategy is capable of selecting perturbed molecular functions that putatively play roles in the progression of diseases and provides an improved interpretability of GO terms based on the definition of Gene Ontology codes.

Regulatory Network Analysis of MicroRNAs and Genes in Neuroblastoma

  • Wang, Li;Che, Xiang-Jiu;Wang, Ning;Li, Jie;Zhu, Ming-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7645-7652
    • /
    • 2014
  • Neuroblastoma (NB), the most common extracranial solid tumor, accounts for 10% of childhood cancer. To date, scientists have gained quite a lot of knowledge about microRNAs (miRNAs) and their genes in NB. Discovering inner regulation networks, however, still presents problems. Our study was focused on determining differentially-expressed miRNAs, their target genes and transcription factors (TFs) which exert profound influence on the pathogenesis of NB. Here we constructed three regulatory networks: differentially-expressed, related and global. We compared and analyzed the differences between the three networks to distinguish key pathways and significant nodes. Certain pathways demonstrated specific features. The differentially-expressed network consists of already identified differentially-expressed genes, miRNAs and their host genes. With this network, we can clearly see how pathways of differentially expressed genes, differentially expressed miRNAs and TFs affect on the progression of NB. MYCN, for example, which is a mutated gene of NB, is targeted by hsa-miR-29a and hsa-miR-34a, and regulates another eight differentially-expressed miRNAs that target genes VEGFA, BCL2, REL2 and so on. Further related genes and miRNAs were obtained to construct the related network and it was observed that a miRNA and its target gene exhibit special features. Hsa-miR-34a, for example, targets gene MYC, which regulates hsa-miR-34a in turn. This forms a self-adaption association. TFs like MYC and PTEN having six types of adjacent nodes and other classes of TFs investigated really can help to demonstrate that TFs affect pathways through expressions of significant miRNAs involved in the pathogenesis of NB. The present study providing comprehensive data partially reveals the mechanism of NB and should facilitate future studies to gain more significant and related data results for NB.

Simple Assessment of Taxonomic Status and Genetic Diversity of Korean Long-Tailed Goral (Naemorhedus caudatus) Based on Partial Mitochondrial Cytochrome b Gene Using Non-Invasive Fecal Samples

  • Kim, Baek-Jun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.1
    • /
    • pp.32-41
    • /
    • 2021
  • South Korea presently harbors less than 800 long-tailed gorals (Naemorhedus caudatus), an endangered species. I report for the first time on the taxonomic status and genetic diversity of the Korean species using non-invasive fecal sampling based on mitochondrial cytochrome b gene sequence analyses. To determine the taxonomic status of this species, I reconstructed a consensus neighbor-joining tree and generated a minimum spanning network combining haplotype sequences obtained from feces with a new goral-specific primer set developed using known sequences of the Korean goral and related species (e.g., Russian goral, Chinese goral, Himalayan goral, Japanese serow, etc.). I also examined the genetic diversity of this species. The Korean goral showed only three different haplotypes. The phylogenetic tree and parsimony haplotype network revealed a single cluster of Korean and Russian gorals, separate from related species. Generally, the Korean goral has a relatively low genetic diversity compared with that of other ungulate species (e.g., moose and red deer). I preliminarily showcased the application of non-invasive fecal sampling to the study of genetic characteristics, including the taxonomic status and genetic diversity of gorals, based on mitochondrial DNA. More phylogenetic studies are necessary to ensure the conservation of goral populations throughout South Korea.