• Title/Summary/Keyword: gene involvement

Search Result 282, Processing Time 0.029 seconds

Relationship between Sloan-Kettering Virus Expression and Granulosa Cells of Atretic Follicles in the Rat Ovary

  • Kim, Hyun;Matsuwaki, Takashi;Yamanouchi, Keitaro;Nishihara, Masugi;Kim, Sung-Woo;Ko, Yeoung-Gyu;Yang, Boh-Suk
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.341-348
    • /
    • 2011
  • Sloan-Kettering virus gene product of a cellular protooncogene c-Ski is an unique nuclear pro-oncoprotein and belongs to the Ski/Sno proto-oncogene family. Ski plays multiple roles in a variety of cell types, it can induce both oncogenic transformation and terminal muscle differentiation when expressed at high levels. The aim of the present study was to locate Ski protein in rat ovaries in order to predict the possible involvement of Ski in follicular development and atresia. First, expression of c-Ski mRNA in the ovaries of adult female rats was confirmed by RT-PCR. Then, ovaries obtained on the day of estrus were subjected to immunohistochemical analysis for Ski and proliferating cell nuclear antigen (PCNA) in combination with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL). Ski was expressed in granulosa cells that were positive for TUNEL, but negative for PCNA, regardless of the shape and size of follicles. Expression of Ski in TUNEL-positive granulosa cells, but not in PCNA-positive granulosa cells, was also verified in immature hypophysectomized rats having a single generation of developing and atretic follicles by treatment with equine chorionic gonadotropin (eCG). These results indicate that Ski is profoundly expressed in the granulosa cells of atretic follicles, but not in growing follicles, and suggest that Ski plays a role in apoptosis of granulosa cells during follicular atresia.

Involvement of Mrs3/4 in Mitochondrial Iron Transport and Metabolism in Cryptococcus neoformans

  • Choi, Yoojeong;Do, Eunsoo;Hu, Guanggan;Caza, Melissa;Horianopoulos, Linda C.;Kronstad, James W.;Jung, Won Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1142-1148
    • /
    • 2020
  • Mitochondria play a vital role in iron uptake and metabolism in pathogenic fungi, and also influence virulence and drug tolerance. However, the regulation of iron transport within the mitochondria of Cryptococcus neoformans, a causative agent of fungal meningoencephalitis in immunocompromised individuals, remains largely uncharacterized. In this study, we identified and functionally characterized Mrs3/4, a homolog of the Saccharomyces cerevisiae mitochondrial iron transporter, in C. neoformans var. grubii. A strain expressing an Mrs3/4-GFP fusion protein was generated, and the mitochondrial localization of the fusion protein was confirmed. Moreover, a mutant lacking the MRS3/4 gene was constructed; this mutant displayed significantly reduced mitochondrial iron and cellular heme accumulation. In addition, impaired mitochondrial iron-sulfur cluster metabolism and altered expression of genes required for iron uptake at the plasma membrane were observed in the mrs3/4 mutant, suggesting that Mrs3/4 is involved in iron import and metabolism in the mitochondria of C. neoformans. Using a murine model of cryptococcosis, we demonstrated that an mrs3/4 mutant is defective in survival and virulence. Taken together, our study suggests that Mrs3/4 is responsible for iron import in mitochondria and reveals a link between mitochondrial iron metabolism and the virulence of C. neoformans.

RNA Expression of Cytochrome P450 in Mexican Women with Breast Cancer

  • Bandala, Cindy;Floriano-Sanchez, E.;Cardenas-Rodriguez, N.;Lopez-Cruz, J.;Lara-Padilla, E.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2647-2653
    • /
    • 2012
  • Involvement of cytochrome P450 genes (CYPs) in breast cancer (BCa) may differ between populations, with expression patterns affected by tumorigenesis. This may have an important role in the metabolism of anticancer drugs and in the progression of cancer. The aim of this study was to determine the mRNA expression patterns of four cytochrome P450 genes (CYP2W1, 3A5, 4F11 and 8A1) in Mexican women with breast cancer. Real-time PCR analyses were conducted on 32 sets of human breast tumors and adjacent non-tumor tissues, as well as 20 normal breast tissues. Expression levels were tested for association with clinical and pathological data of patients. We found higher gene expression of CYP2W1, CYP3A5, CYP4F11 in BCa than in adjacent tissues and only low in normal mammary glands in our Mexican population while CYP8A1 was only expressed in BCa and adjacent tissues. We found that Ki67 protein expression was associated with clinicopathological features as well as with CYP2W1, CYP4F11 and CYP8A1 but not with CYP3A5. The results indicated that breast cancer tissues may be better able to metabolize carcinogens and other xenobiotics to active species than normal or adjacent non-tumor tissues.

Involvement of ERK1/2 and JNK Pathways in 17${\beta}-estradiol$ Induced Kir6.2 and SK2 Upregulation in Rat Osteoblast-like Cells

  • Kim, Jung-Wook;Yang, Eun-Kyoung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.199-205
    • /
    • 2006
  • The functional expression of potassium $(K^+)$ channels has electrophysiologically been studied in bone cells from several species, however, their identity and regulation of gene expressions in bone cells are not well known. In the present study, to investigate how $K^+$ channel expressions are regulated by estrogen, we measured changes of transcript levels of various $Ca^{2+}$-activated ($K_{Ca}$) and ATP-sensitive $K^+$ channels in rat osteoblastic ROS 17/2.8 cells after treatment with estrogen. Application of 17${\beta}$-estradiol $(E_2)$ for 24 h and 48 h increased mRNA and protein expressions of inwardly rectifying $K^+$ channel (Kir) 6.2 and type 2 small conductance $K_{Ca}$ channel (SK2), respectively. Combined treatment of cells with 17${\beta}-E_2$ and ICI 182,780, a pure antiestrogen, suppressed 17${\beta}-E_2$-induced alterations of SK2 and Kir6.2 mRNA levels. In addition, treatment of cells with U0126, a specific inhibitor of extracellular receptor kinases (ERK)1/2, and SP600125, a specific inhibitor of c-jun N-terminal kinase (JNK) blocked the enhancing effects of 17${\beta}-E_2$ on SK2 and Kir6.2 protein expressions. On the other hand, blocking of p38 mitogen-activated protein kinase had no effect. Taken together, these results indicate that 17${\beta}-E_2$ modulates SK2 and Kir6.2 expressions through the estrogen receptor, involving ERK1/2 and JNK activations.

Increased Resistance to Quinolones in Streptococcus parauberis and Development of a Rapid Assay for Detecting Mutations in Topoisomerase Genes (Streptococcus parauberis의 퀴놀론 내성 증가와 Topoisomerase 유전자에서의 돌연변이 신속 분석)

  • Kim, So Yeon;Kim, Young Chul;Jeong, Seo Kyung;Jun, Lyu Jin;Jin, Ji Woong;Jeong, Hyun Do
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • To investigate the acquisition of quinolone resistance, we examined mutations in the quinolone resistance-determining region (QRDR) of type II topoisomerase genes in ciprofloxacin (CIP)-resistant clinical isolates and in vitro mutants of Streptococcus parauberis. The CIP-resistant clinical isolates had one base change responsible for a Ser-79${\rightarrow}$Thr in the QRDR of parC. However, the CIP-resistant in vitro mutants had an altered QRDR of parC (Ser-79${\rightarrow}$Ile) that differed from that of the isolates. None of the CIP-resistant S. parauberis clinical isolates or in vitro mutants exhibited amino acid changes in gyrA or gyrB. However, even though involvement in the increased resistance was not clear, an Arg-449${\rightarrow}$Ser mutation outside of the QRDR of parE was detected in CIP-resistant mutant 2P1. These results suggest that the topoisomerase IV gene, parC (and possibly parE, as well), is the primary ciprofloxacin target in S. parauberis. Additionally we established a high-resolution melting (HRM) assay capable of detecting the dominant mutation in four type II topoisomerase genes conferring ciprofloxacin resistance. These rapid and reliable assays may provide a convenient method of surveillance for genetic mutations conferring antibiotic resistance.

Expression and Clinical Significance of miRNA-34a in Colorectal Cancer

  • Ma, Zhi-Bin;Kong, Xiao-Lin;Cui, Gang;Ren, Cui-Cui;Zhang, Ying-Jie;Fan, Sheng-Jin;Li, Ying-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9265-9270
    • /
    • 2014
  • Background: The aim of this study was to investigate differences of miRNA-34a expression in benign and malignant colorectal lesions. Materials and Methods: Samples of cancer, paraneoplastic tissues and polyps were selected and total RNA was extracted by conventional methods for real-time PCR to detect the miRNA-34a expression. In addition, the LOVO colorectal cancer cell line was cultured, treated with the demethylating agent 5-azacytidine and screened for differentially expressed miRNA-34a. Results: After the drug treatment, the miRNA-34a expression of colorectal cancer cell line LOVO was increased and real-time PCR showed that levels of expression in both cell line and colorectal cancer tissues were low, as compared to paraneoplastic tissue (p<0.05). Polyps tissues had significantly higher expression than paraneoplastic and colorectal cancer samples (p<0.05). Conclusions: miRNA-34a-5p may play a role as a tumor suppressor gene in colorectal cancer, with involvement of DNA methylation.

ORAL CHARACTERISTIC OF ALAGILLE SYNDROME - A CASE REPORT (Alagille 증후군을 가진 환자의 구강내 특징에 대한 증례보고)

  • Kim, Tae-Wan;Kim, Young-Jin
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2007
  • Alagille syndrome is an autosomal dominant genetic disorder and occurs in approximately 1 in 100,000 live births. Diagnostic criteria was established by Alagille. It is mainly caused by a mutation in the Jagged1 gene. Major clinical features of this syndrome are paucity of intrahepatic bile duct with cholestasis, characteristic facies, cardiac murmur, defects of vertebrae, and embryotoxon. And minor clinical features are mental retardation, renal involvement, growth retardation, other skeletal abnormalities, a high-pitched voice. The surviving prognosis of Alagille syndrome patients depends on the severity of cardiovescular malformation in the early ages of infant. However, with the increasing years, it depends on the severity of the liver disease. Cholestasis causes congenital jaundice, malnutrition and growth retardation. Also, the increase of serum cholesterol level cause xanthoma and pruritus. Even though the severity of these problems are reduce with age, there is cases where there is no way but liver transplantation. For oral features of Alagille syndrome patients, green discoloration of entire dentition, induced by bilirubin infiltration into dentinal tubules, is especially. Also, xanthoma on gingiva and partial hypodontia have been reported. This report is on the oral features of an Alagille syndrome patient who visited to Kyung-Pook University Hospital.

  • PDF

Compressive force regulates ephrinB2 and EphB4 in osteoblasts and osteoclasts contributing to alveolar bone resorption during experimental tooth movement

  • Hou, Jianhua;Chen, Yanze;Meng, Xiuping;Shi, Ce;Li, Chen;Chen, Yuanping;Sun, Hongchen
    • The korean journal of orthodontics
    • /
    • v.44 no.6
    • /
    • pp.320-329
    • /
    • 2014
  • Objective: To investigate the involvement of ephrinB2 in periodontal tissue remodeling in compression areas during orthodontic tooth movement and the effects of compressive force on EphB4 and ephrinB2 expression in osteoblasts and osteoclasts. Methods: A rat model of experimental tooth movement was established to examine the histological changes and the localization of ephrinB2 in compressed periodontal tissues during experimental tooth movement. RAW264.7 cells and ST2 cells, used as precursor cells of osteoclasts and osteoblasts, respectively, were subjected to compressive force in vitro. The gene expression of EphB4 and ephrinB2, as well as bone-associated factors including Runx2, Sp7, NFATc1, and calcitonin receptor, were examined by quantitative real-time polymerase chain reaction (PCR). Results: Histological examination of the compression areas of alveolar bone from experimental rats showed that osteoclastogenic activities were promoted while osteogenic activities were inhibited. Immunohistochemistry revealed that ephrinB2 was strongly expressed in osteoclasts in these areas. Quantitative real-time PCR showed that mRNA levels of NFATc1, calcitonin receptor, and ephrinB2 were increased significantly in compressed RAW264.7 cells, and the expression of ephrinB2, EphB4, Sp7, and Runx2 was decreased significantly in compressed ST2 cells. Conclusions: Our results indicate that compressive force can regulate EphB4 and ephrinB2 expression in osteoblasts and osteoclasts, which might contribute to alveolar bone resorption in compression areas during orthodontic tooth movement.

A Long Non-Coding RNA snaR Contributes to 5-Fluorouracil Resistance in Human Colon Cancer Cells

  • Lee, Heejin;Kim, Chongtae;Ku, Ja-Lok;Kim, Wook;Kim Yoon, Sungjoo;Kuh, Hyo-Jeong;Lee, Jeong-Hwa;Nam, Suk Woo;Lee, Eun Kyung
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.540-546
    • /
    • 2014
  • Several types of genetic and epigenetic regulation have been implicated in the development of drug resistance, one significant challenge for cancer therapy. Although changes in the expression of non-coding RNA are also responsible for drug resistance, the specific identities and roles of them remain to be elucidated. Long non-coding RNAs (lncRNAs) are a type of ncRNA (> 200 nt) that influence the regulation of gene expression in various ways. In this study, we aimed to identify differentially expressed lncRNAs in 5-fluorouracil-resistant colon cancer cells. Using two pairs of 5-FU-resistant cells derived from the human colon cancer cell lines SNU-C4 and SNU-C5, we analyzed the expression of 90 lncRNAs by qPCR-based profiling and found that 19 and 23 lncRNAs were differentially expressed in SNU-C4R and SNU-C5R cells, respectively. We confirmed that snaR and BACE1AS were down-regulated in resistant cells. To further investigate the effects of snaR on cell growth, cell viability and cell cycle were analyzed after transfection of siRNAs targeting snaR. Down-regulation of snaR decreased cell death after 5-FU treatment, which indicates that snaR loss decreases in vitro sensitivity to 5-FU. Our results provide an important insight into the involvement of lncRNAs in 5-FU resistance in colon cancer cells.

Dendrosomal Curcumin Suppresses Metastatic Breast Cancer in Mice by Changing M1/M2 Macrophage Balance in the Tumor Microenvironment

  • Shiri, Sadaf;Alizadeh, Ali Mohammad;Baradaran, Behzad;Farhanghi, Baharak;Shanehbandi, Dariush;Khodayari, Saeed;Khodayari, Hamid;Tavassoli, Abbas
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3917-3922
    • /
    • 2015
  • Curcumin, a lipid-soluble compound extracted from the plant Curcuma Longa, has been found to exert immunomodulatory effects via macrophages. However, most studies focus on the low bioavailability issue of curcumin by nano and microparticles, and thus the role of macrophages in the anticancer mechanism of curcumin has received little attention so far. We have previously shown the potential biocompatibility, biodegradability and anti-cancer effects of dendrosomal curcumin (DNC). In this study, twenty-seven BALB/c mice were equally divided into control as well as 40 and 80 mg/kg groups of DNC to investigate the involvement of macrophages in the antitumor effects of curcumin in a typical animal model of metastatic breast cancer. At the end of intervention, the tumor volume and weight were significantly reduced in DNC groups compared to control (P<0.05). Histopathological data showed the presence of macrophages in tumor and spleen tissues. Real-time PCR results showed that DNC increased the expression of STAT4 and IL-12 genes in tumor and spleen tissues in comparison with control (P<0.05), referring to the high levels of M1 macrophages. Furthermore treatment with DNC decreased STAT3, IL-10 and arginase I gene expression (P<0.05), indicating low levels of M2 macrophage. The results confirm the role of macrophages in the protective effects of dendrosomal curcumin against metastatic breast cancer in mice.