• Title/Summary/Keyword: gene expression and regulation

Search Result 1,671, Processing Time 0.041 seconds

Expression of Immortalization-upregulated Proteins-2 (IMUP-2) in Placenta (태반 내 Immortalization-upregulated Proteins-2 (IMUP-2) 발현)

  • Jeon, Su-Yeon;Lee, Hyun-Jung;Jung, Hyun-Min;Kim, Jin-Kyeoung;Kim, Gi-Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.3
    • /
    • pp.163-174
    • /
    • 2009
  • Objectives: Members of the immortalization-upregulated protein (IMUP) family are nuclear proteins implicated in SV40-mediated immortalization and cellular proliferation, but the mechanisms by which their expression is regulated are still unknown in placenta. To investigate to expression and functions of IMUPs in placenta, we conducted to compare IMUPs expression in normal and preeclamptic placenta tissues and analyzed the function of IMUP-2 in HTR-8/SVneo trophoblast cells after IMUP-2 gene transfection. Methods: The expression of IMUPs was analyzed in placental tissues from the following groups of patients (none underwent labor): 1) term normal placenta (n=15); 2) term with preeclamptic placeneta (n=15); and 3) pre-term with preeclamptic placenta (n=11) using semi-quantitative RT-PCR, RNA in situ hybiridization, immunohistochemistry, and Western blot. In order to evaluate the function of IMUP-2 in HTR-8/SVneo trophoblast cells, IMUP-2 plasmids were transfected into HTR-8/SVneo trophoblast cells for 24 hours. Results: We observed that IMUPs are mainly expressed in the syncytiotrophoblasts and syncytial knot of placental villi. The expression of IMUP-1 was not differences between normal and preeclamptic placenta tissues. However, IMUP-2 expression was significantly higher in preterm preeclamptic placenta tissues than in normal placenta tissues without labor (p<0.001). Furthermore, we confirmed overexpression of IMUP-2 induced apoptosis in HTR-8/SVneo trophoblast cells through up-regulation of pro-apoptotic proteins. Conclusions: These results suggest that the expression of IMUP-2 is involved in placental development as well as increased IMUP-2 expression is associated with preeclampsia through the inducing of trophoblast apoptosis.

Biological Mechanism of Suicide (자살의 생물학적 기전)

  • Cheon, Eun-Jin
    • Journal of the Korean society of biological therapies in psychiatry
    • /
    • v.24 no.3
    • /
    • pp.129-141
    • /
    • 2018
  • Suicide is a behavior that is intended to cause death by itself and requires medical treatment, resulting in suicidal attempt or completion. Suicide causes loss of life, damages the body, costs a lot of medical expenses, and causes families to fall into sorrow and suffering therefore this suicide is a huge loss to family and society. There have been attempts to reduce and prevent suicide by understanding the mechanism of suicide. The mechanism of suicide can be thought of as psychological mechanism and biological mechanism. In the past, if we considered the psychological and biological mechanisms separately, the development of neuroscience now connects and integrates these two. Psychological factors affect biological factors and biological temperaments also affect perception or thinking about the situation and increase psychological vulnerability. Distant factors in suicidal behavior-such as childhood adversity and family and genetic predisposition-increase the lifetime risk of suicide. They alter the response to stress and other processes through changes in gene expression and regulation of emotional and behavioral characteristics. Distant factors affect the biological system and consequently changes in these systems can increase the risk of suicide. In other words, the distal factor does not directly induce suicidal behavior but rather acts indirectly through developmental or mediating factors. These mediating factors are impulsive aggressive and anxious trait, and chronic use of substances. The mechanism of this disorder is the abnormality of the serotonin system and the abnormality of the lipid level. Proximal factors are associated with the onset of suicide events and include changes in the major neurotransmitter systems, inflammatory changes, and dysfunction of glial cells in the brain. A series of studies, including a variety of research methods and postmortem and in-vivo imaging studies, show the impairment of the serotonergic neurotransmitter system and hypothalamic-pituitary-adrenal axis stress response system for suicidal behavior. These disorders lead to suicidal behavior due to difficulty in cognitive control of mood, pessimism, reactive aggression, abnormality in problem solving abilities, excessive response to negative social signals, severe emotional distress, and cognitive dysregulation of suicidal ideation.

Arabidopsis Raf-Like Kinase Raf10 Is a Regulatory Component of Core ABA Signaling

  • Nguyen, Quy Thi Cam;Lee, Sun-ji;Choi, Seo-wha;Na, Yeon-ju;Song, Mi-ran;Hoang, Quyen Thi Ngoc;Sim, Seo Young;Kim, Min-Sik;Kim, Jeong-Il;Soh, Moon-Soo;Kim, Soo Young
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.646-660
    • /
    • 2019
  • Abscisic acid (ABA) is a phytohormone essential for seed development and seedling growth under unfavorable environmental conditions. The signaling pathway leading to ABA response has been established, but relatively little is known about the functional regulation of the constituent signaling components. Here, we present several lines of evidence that Arabidopsis Raf-like kinase Raf10 modulates the core ABA signaling downstream of signal perception step. In particular, Raf10 phosphorylates subclass III SnRK2s (SnRK2.2, SnRK2.3, and SnRK2.6), which are key positive regulators, and our study focused on SnRK2.3 indicates that Raf10 enhances its kinase activity and may facilitate its release from negative regulators. Raf10 also phosphorylates transcription factors (ABI5, ABF2, and ABI3) critical for ABA-regulted gene expression. Furthermore, Raf10 was found to be essential for the in vivo functions of SnRK2s and ABI5. Collectively, our data demonstrate that Raf10 is a novel regulatory component of core ABA signaling.

Development of Lotus Root Bugak with Plasma Lipid Reduction Capacity by Addition of Opuntia ficus-indica var. saboten or Green Tea as a Coloring Agent (백년초 및 녹차 가루 첨가 연근 부각의 지질저하 기능성)

  • Kim, Mijeong;Hong, Sun Hee;Chung, Lana;Choe, Eunok;Song, Yeong-Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.333-340
    • /
    • 2014
  • The purpose of this study was to develop functional lotus root bugak with plasma lipid reduction capacity by controlling the color of batter used for bugak preparation. Lotus root, nearly colorless, was selected to observe color effects. Gardeniae fructus (GF), Opuntia ficus-indica var. saboten (OF), and green tea (GT), which are colored yellow, red, and green, respectively, were used as coloring agents. Fermented glutinous rice was prepared naturally during winter season by placing glutinous rice and water (1:2, w/w) together in a crock pot for 7 days. Coloring materials (10%, w/w) were blended with glue made from fermented glutinous rice flour to prepare the batter. Cooked lotus root was then mixed with a 1.1-fold amount of batter (w/w) and dried at room temperature. Lotus root bugak (LRB) is pan-fried with un-roasted sesame oil, which is traditionally used as frying oil in Korea. Low-density lipoprotein receptor knockout ($LDLr^{-/-}$) mice (n=36) were fed an atherogenic diet (AD) containing various types of LRB (10 g%) for 10 weeks. Plasma triglyceride, total cholesterol, and LDL-C concentrations decreased significantly in mice fed LRB prepared with OF batter (OFB) and GT batter (GTB) (P<0.05). Protein expression levels of fatty acid synthase (FAS) and 3-hydroxyl-3-methylglutaryl coenzyme A reductase (HMGCR) in the OFB and GTB groups were suppressed compared with the LRB group (P<0.05). In accordance with the results on FAS and HMGCR expression, sterol regulatory element binding protein-I and II (SREBP-I and II), which are responsible for the regulation of FAS and HMGCR gene expression, respectively, were down-regulated compared to the LRB group (P<0.05). In conclusion, the plasma lipid reduction activities of OFB and GTB could be mediated through down-regulation of FAS and HMGCR mRNA expression via suppression of regulatory molecules, SREBP-I and II, in $LDLr^{-/-}$ mice.

Biocomputational Characterization and Evolutionary Analysis of Bubaline Dicer1 Enzyme

  • Singh, Jasdeep;Mukhopadhyay, Chandra Sekhar;Arora, Jaspreet Singh;Kaur, Simarjeet
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.876-887
    • /
    • 2015
  • Dicer, an ribonuclease type III type endonuclease, is the key enzyme involved in biogenesis of microRNAs (miRNAs) and small interfering RNAs (siRNAs), and thus plays a critical role in RNA interference through post transcriptional regulation of gene expression. This enzyme has not been well studied in the Indian water buffalo, an important species known for disease resistance and high milk production. In this study, the primary coding sequence (5,778 bp) of bubaline dicer (GenBank: AB969677.1) was determined and the bubaline Dicer1 biocomputationally characterized to determine the phylogenetic signature among higher eukaryotes. The evolutionary tree revealed that all the transcript variants of Dicer1 belonging to a specific species were within the same node and the sequences belonging to primates, rodents and lagomorphs, avians and reptiles formed independent clusters. The bubaline dicer1 is closely related to that of cattle and other ruminants and significantly divergent from dicer of lower species such as tapeworm, sea urchin and fruit fly. Evolutionary divergence analysis conducted using MEGA6 software indicated that dicer has undergone purifying selection over the time. Seventeen divergent sequences, representing each of the families/taxa were selected to study the specific regions of positive vis-$\grave{a}$-vis negative selection using different models like single likelihood ancestor counting, fixed effects likelihood, and random effects likelihood of Datamonkey server. Comparative analysis of the domain structure revealed that Dicer1 is conserved across mammalian species while variation both in terms of length of Dicer enzyme and presence or absence of domain is evident in the lower organisms.

PARK2 Induces Osteoclastogenesis through Activation of the NF-κB Pathway

  • Hong, Seo Jin;Jung, Suhan;Jang, Ji Sun;Mo, Shenzheng;Kwon, Jun-Oh;Kim, Min Kyung;Kim, Hong-Hee
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.749-760
    • /
    • 2022
  • Osteoclast generation from monocyte/macrophage lineage precursor cells needs to be tightly regulated to maintain bone homeostasis and is frequently over-activated in inflammatory conditions. PARK2, a protein associated with Parkinson's disease, plays an important role in mitophagy via its ubiquitin ligase function. In this study, we investigated whether PARK2 is involved in osteoclastogenesis. PARK2 expression was found to be increased during the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. PARK2 gene silencing with siRNA significantly reduced osteoclastogenesis induced by RANKL, LPS (lipopolysaccharide), TNFα (tumor necrosis factor α), and IL-1β (interleukin-1β). On the other hand, overexpression of PARK2 promoted osteoclastogenesis. This regulation of osteoclastogenesis by PARK2 was mediated by IKK (inhibitory κB kinase) and NF-κB activation while MAPK (mitogen-activated protein kinases) activation was not involved. Additionally, administration of PARK2 siRNA significantly reduced osteoclastogenesis and bone loss in an in vivo model of inflammatory bone erosion. Taken together, this study establishes a novel role for PARK2 as a positive regulator in osteoclast differentiation and inflammatory bone destruction.

ST5 Positively Regulates Osteoclastogenesis via Src/Syk/Calcium Signaling Pathways

  • Kim, Min Kyung;Kim, Bongjun;Kwon, Jun-Oh;Song, Min-Kyoung;Jung, Suhan;Lee, Zang Hee;Kim, Hong-Hee
    • Molecules and Cells
    • /
    • v.42 no.11
    • /
    • pp.810-819
    • /
    • 2019
  • For physiological or pathological understanding of bone disease caused by abnormal behavior of osteoclasts (OCs), functional studies of molecules that regulate the generation and action of OCs are required. In a microarray approach, we found the suppression of tumorigenicity 5 (ST5) gene is upregulated by receptor activator of nuclear $factor-{\kappa}B$ ligand (RANKL), the OC differentiation factor. Although the roles of ST5 in cancer and ${\beta}-cells$ have been reported, the function of ST5 in bone cells has not yet been investigated. Knockdown of ST5 by siRNA reduced OC differentiation from primary precursors. Moreover, ST5 downregulation decreased expression of NFATc1, a key transcription factor for osteoclastogenesis. In contrast, overexpression of ST5 resulted in the opposite phenotype of ST5 knockdown. In immunocytochemistry experiments, the ST5 protein is colocalized with Src in RANKL-committed cells. In addition, ST5 enhanced activation of Src and Syk, a Src substrate, in response to RANKL. ST5 reduction caused a decrease in RANKL-evoked calcium oscillation and inhibited translocation of NFATc1 into the nucleus. Taken together, these findings provide the first evidence of ST5 involvement in positive regulation of osteoclastogenesis via Src/Syk/calcium signaling.

Involvement of Mrs3/4 in Mitochondrial Iron Transport and Metabolism in Cryptococcus neoformans

  • Choi, Yoojeong;Do, Eunsoo;Hu, Guanggan;Caza, Melissa;Horianopoulos, Linda C.;Kronstad, James W.;Jung, Won Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1142-1148
    • /
    • 2020
  • Mitochondria play a vital role in iron uptake and metabolism in pathogenic fungi, and also influence virulence and drug tolerance. However, the regulation of iron transport within the mitochondria of Cryptococcus neoformans, a causative agent of fungal meningoencephalitis in immunocompromised individuals, remains largely uncharacterized. In this study, we identified and functionally characterized Mrs3/4, a homolog of the Saccharomyces cerevisiae mitochondrial iron transporter, in C. neoformans var. grubii. A strain expressing an Mrs3/4-GFP fusion protein was generated, and the mitochondrial localization of the fusion protein was confirmed. Moreover, a mutant lacking the MRS3/4 gene was constructed; this mutant displayed significantly reduced mitochondrial iron and cellular heme accumulation. In addition, impaired mitochondrial iron-sulfur cluster metabolism and altered expression of genes required for iron uptake at the plasma membrane were observed in the mrs3/4 mutant, suggesting that Mrs3/4 is involved in iron import and metabolism in the mitochondria of C. neoformans. Using a murine model of cryptococcosis, we demonstrated that an mrs3/4 mutant is defective in survival and virulence. Taken together, our study suggests that Mrs3/4 is responsible for iron import in mitochondria and reveals a link between mitochondrial iron metabolism and the virulence of C. neoformans.

Sodium butyrate inhibits high glucose-induced inflammation by controlling the acetylation of NF-κB p65 in human monocytes

  • Ha-Rin Moon;Jung-Mi Yun
    • Nutrition Research and Practice
    • /
    • v.17 no.1
    • /
    • pp.164-173
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Hyperglycemia is a major cause of diabetes and diabetesrelated diseases. Sodium butyrate (NaB) is a short-chain fatty acid derivative that produces dietary fiber by anaerobic bacterial fermentation in the large intestine and occurs in foods, such as Parmesan cheese and butter. Butyrate has been shown to prevent obesity, improve insulin sensitivity, and ameliorate dyslipidemia in diet-induced obese mice. Therefore, this study examined the effects and mechanism of NaB on the secretion of inflammatory cytokines induced by high glucose (HG) in THP-1 cells. MATERIALS/METHODS: THP-1 cells were used as an in vitro model for HG-induced inflammation. The cells were cultured under normal glycemic or hyperglycemic conditions with or without NaB (0-25 μM). Western blotting and quantitative polymerase chain reaction were used to evaluate the protein and mRNA levels of nuclear factor-κB (NF-κB), interleukin-6, tumor necrosis factor-α, acetylated p65, acetyl CREB-binding protein/p300 (CBP/p300), and p300 using THP-1 cells. Histone acetyltransferase (HAT), histone deacetylase (HDAC), and pro-inflammatory cytokine secretion activity were analyzed using an enzyme-linked immunosorbent assay. RESULTS: HG significantly upregulated histone acetylation, acetylation levels of p300, NF-κB activation, and inflammatory cytokine release in THP-1 cells. Conversely, the NaB treatment reduced cytokine release and NF-κB activation in HG-treated cells. It also significantly reduced p65 acetylation, CBP/p300 HAT activity, and CBP/p300 gene expression. In addition, NaB decreased the interaction of p300 in acetylated NF-κB and TNF-α. CONCLUSIONS: These results suggest that NaB suppresses HG-induced inflammatory cytokine production through HAT/HDAC regulation in monocytes. NaB has the potential for preventing and treating diabetes and its related complications.

Short-Hairpin RNA-Mediated MTA2 Silencing Inhibits Human Breast Cancer Cell Line MDA-MB231 Proliferation and Metastasis

  • Lu, Jun;Jin, Mu-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5577-5582
    • /
    • 2014
  • Objective: To observe the effects of metastasis-associated tumor gene family 2 (MTA2) depletion on human breast cancer cell proliferation and metastasis. Methods: A short-hairpin RNA targeting MTA2 was chemically synthesized and transfected into a lentivirus to construct Lv-shMTA2 for infection into the MDA-MB231 human breast cancer cell line. At 48 hours after infection cells were harvested and mRNA and protein levels of MTA2 were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting, respectively. Cell viability and metastasis were assessed by CCK-8, wound-healing assay and Transwell assay, respectively. In addition, a xenograft model of human breast cancer was constructed to investigate cancerous cell growth and capacity for metastasis. Results: After infection with Lv-shMTA2, mRNA and protein levels of MTA2 was significantly reduced (p<0.05) and MDA-MB231 cell proliferation and metastasis were inhibited (p<0.05). In addition, mean tumor size was smaller than that in control group nude mice (p<0.05) and numbers of metastatic deposits in lung were lower than in control group mice (p<0.05). Depletion of MTA2 affected MMP-2 and apoptosis-related protein expression. Conclusions: For the first time to our knowledge we showed that MTA2 depletion could significantly inhibit human breast cancer cell growth and metastasis, implying that MTA2 might be involved in the progression of breast cancer. The role of MTA2 in breast cancer growth and metastasis might be linked with regulation of matrix metalloproteinase and apoptosis.