Browse > Article
http://dx.doi.org/10.5713/ajas.14.0767

Biocomputational Characterization and Evolutionary Analysis of Bubaline Dicer1 Enzyme  

Singh, Jasdeep (School of Animal Biotechnology, Post Graduate Institute of Veterinary Education and Research, Guru Angad Dev Veterinary and Animal Sciences University)
Mukhopadhyay, Chandra Sekhar (School of Animal Biotechnology, Post Graduate Institute of Veterinary Education and Research, Guru Angad Dev Veterinary and Animal Sciences University)
Arora, Jaspreet Singh (School of Animal Biotechnology, Post Graduate Institute of Veterinary Education and Research, Guru Angad Dev Veterinary and Animal Sciences University)
Kaur, Simarjeet (Department of Animal Genetics and Breeding, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.6, 2015 , pp. 876-887 More about this Journal
Abstract
Dicer, an ribonuclease type III type endonuclease, is the key enzyme involved in biogenesis of microRNAs (miRNAs) and small interfering RNAs (siRNAs), and thus plays a critical role in RNA interference through post transcriptional regulation of gene expression. This enzyme has not been well studied in the Indian water buffalo, an important species known for disease resistance and high milk production. In this study, the primary coding sequence (5,778 bp) of bubaline dicer (GenBank: AB969677.1) was determined and the bubaline Dicer1 biocomputationally characterized to determine the phylogenetic signature among higher eukaryotes. The evolutionary tree revealed that all the transcript variants of Dicer1 belonging to a specific species were within the same node and the sequences belonging to primates, rodents and lagomorphs, avians and reptiles formed independent clusters. The bubaline dicer1 is closely related to that of cattle and other ruminants and significantly divergent from dicer of lower species such as tapeworm, sea urchin and fruit fly. Evolutionary divergence analysis conducted using MEGA6 software indicated that dicer has undergone purifying selection over the time. Seventeen divergent sequences, representing each of the families/taxa were selected to study the specific regions of positive vis-$\grave{a}$-vis negative selection using different models like single likelihood ancestor counting, fixed effects likelihood, and random effects likelihood of Datamonkey server. Comparative analysis of the domain structure revealed that Dicer1 is conserved across mammalian species while variation both in terms of length of Dicer enzyme and presence or absence of domain is evident in the lower organisms.
Keywords
Bubaline; Dicer; Phylogeny; Selection Pressure; Ribonuclease III Domain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410.   DOI
2 Cerutti, H. and J. A. Casas-Mollano. 2006. On the origin and functions of RNA-mediated silencing: From protists to man. Curr. Genet. 50:81-99.   DOI
3 Gao, Z., M. Wang, D. Blair, Y. Zheng, and Y. Dou. 2014. Phylogenetic analysis of the endoribonuclease dicer family. PLoS ONE 9(4):e95350.   DOI   ScienceOn
4 Gasciolli, V., A. C. Mallory, D. P. Bartel, and H. Vaucheret. 2005. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr. Biol. 15:1494-1500.   DOI   ScienceOn
5 Graur, D. 1985. Amino acid composition and the evolutionary rates of protein-coding genes. J. Mol. Evol. 22:53-62.   DOI
6 Heger, A. and C. P. Ponting. 2007. Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes. Genome Res. 17:1837-1849.   DOI   ScienceOn
7 Jones, D. T., W. R. Taylor, and J. M. Thornton. 1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8:275-282.
8 Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge, England.
9 Kolaczkowski, B., D. N. Hupalo, and A. D. Kern. 2011. Recurrent adaptation in RNA interference genes across the Drosophila phylogeny. Mol. Biol. Evol. 28:1033-1042.   DOI   ScienceOn
10 Kurihara, Y. and Y. Watanabe. 2004. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl. Acad. Sci. USA. 101:12753-12758.   DOI   ScienceOn
11 Le, S. Q. and O. Gascuel. 2008. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25:1307-1320.   DOI   ScienceOn
12 Lee, Y. S., K. Nakahara, J. W. Pham, K. Kim, Z. He, E. J. Sontheimer, and R. W. Carthew. 2004. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69-81.   DOI   ScienceOn
13 Li, W. H. 1997. Molecular Evolution. Sinauer, Sunderland, MA, USA.
14 Margis, R., A. F. Fusaro, N. A. Smith, S. J. Curtin, J. M. Watson, E. J. Finnegan, and P. M. Waterhouse. 2006. The evolution and diversification of Dicers in plants. FEBS Lett. 580:2442-2450.   DOI   ScienceOn
15 Mukherjee, K., H. Campos, and B. Kolaczkowski. 2012. Evolution of animal and plant dicers: Early parallel duplications and recurrent adaptation of antiviral RNA binding in plants. Mol. Biol. Evol. doi:10.1093/molbev/mss263.   DOI
16 Murphy, D., B. Dancis, and J. R. Brown. 2008. The evolution of core proteins involved in microRNA biogenesis. BMC Evol. Biol. 8:92.   DOI   ScienceOn
17 Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, NY, USA.
18 Nei, M. and S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, NY, USA.
19 Obbard, D. J., F. M. Jiggins, D. L. Halligan, and T. J. Little. 2006. Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr. Biol. 16:580-585.   DOI   ScienceOn
20 Pond, S. L. K., B. Murrell, M. Fourment, S. W. D. Frost, W. Delport, and K. Scheffler. 2011. A random effects branch-site model for detecting episodic diversifying selection. Mol. Biol. Evol. 28:3033-3043.   DOI   ScienceOn
21 Untergrasser, A., I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth, M. Remm, and S. G. Rozen. 2012. Primer3 - new capabilities and interfaces. Nucl. Acids Res. 40(15):e115.   DOI
22 Stowe, H. M., E. Curry, S. M. Calcatera, R. L. Krisher, M. Paczkowski, and S. L. Pratt. 2012. Cloning and expression of porcine Dicer and the impact of developmental stage and culture conditions on MicroRNA expression in porcine embryos. Gene 501:198-205.   DOI   ScienceOn
23 Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30:2725-2729.   DOI   ScienceOn
24 Tourasse, N. J. and W. H. Li. 2000. Selective constraints, amino acid composition, and the rate of protein evolution. Mol. Biol. Evol. 17:656-664.   DOI   ScienceOn
25 Xie, Z., E. Allen, A. Wilken, and J. C. Carrington. 2005. Dicerlike 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA .102:12984-12989.   DOI   ScienceOn