• Title/Summary/Keyword: gene engineering

Search Result 2,289, Processing Time 0.029 seconds

Molecular Cloning and Expression of the $\beta$-Xylosidase Gene (xylB) of Bacillus stearothermophilus in Escherichia coli

  • Suh, Jung-Han;Eom, Soo-Jung;Cho, Ssang-Goo;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.5
    • /
    • pp.331-335
    • /
    • 1996
  • The second $\beta$-Xylosidase gene (xylB) from Bacillus stearothermophilus was isolated from the genomic library, cloned into pBR322, and subsequently transferred into Escherichia coli HB101. Six out of 10, 000 transformants were selected from the selective LB medium supplemented with p-nitrophenyl-$\alpha$-L-arabinofuranoside (pNPAf) and ampicillin ($50\mu g$/ml) based on their ability to form a yellow ring around the colony. One of the clones was found to harbor the recombinant plasmid with 5.0 kb foreign DNA, which was identical to the $\alpha$-L-arabinofuranosidase gene (arfI) previously cloned in this lab, while the other five had 3.5 kb of the foreign DNA. Southern blotting experiments confirmed that the 3.5 kb insert DNA was from B. stearothermophilus chromosomal DNA. A zymogram with 4-methylumbelliferyl-$\alpha$-L-arabinofuranoside as the enzyme substrate revealed that the cloned gene product was one of the mutiple $\alpha$-L-arabinofuranosidases produced by B. stearothermophilus. Unlike the arfI gene product, the product of the gene on the insert DNA (xylB) showed an activity not only on pNPAf but also on oNPX suggesting that the cloned gene product could be a bifunctional enzyme having both $\alpha$-L-arabinofuranosidase and $\beta$-xylosidase activities.

  • PDF

Construction of a Baculovirus Expression System Using Hyphantria cunea Nuclear Polyhedrosis Virus for Eukaryotic Cells

  • Lee, Hyung-Hoan;Kang, Bong-Joo;Park, Kap-Ju;Cha, Soung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.676-684
    • /
    • 1998
  • Baculovirus transfer and expression vectors with Hyphantria cunea nuclear polyhedrosis virus (HcNPV) were constructed. An initial transfer vector, pHcEV, constructed using HcNPV was previously reported (Park et al. 1993. J. Kor. Soc. Viral. 23: 141-151). Herein, the size of the vector was properly reduced, and a functionally perfect vector was constructed and named pHcEV-IV (6.7 kb). The vector has a 2.2-kb HcNPV DNA sequence in the 5'-flanking region of the vector's polyhedrin gene promoter. The 1.8-kb HcNPV DNA sequence, poly A signal sequence, T3 primer sequence, and 13 multicloning site sequences, in order, were ligated in front of the translation start codon of the polyhedrin gene. The cloning indicating marker lacZ gene was inserted into the pHcEV-IV, named pHcEV-IV-lacZ, and transferred into the wild-type virus. Recombinant expression virus, lacZ-HcNPV, was constructed by replacing the lacZ gene in the pHcEV-IV-lacZ with the polyhedrin gene of the wild-type virus. The recombinant virus was isolated from blue plaques that produce $\beta$-galactosidase without polyhedra. The lacZ gene insertion was confirmed by Southern hybridization analysis. The expression of the lacZ gene in Spodoptera frugiperda cells infected with the lacZ-HcNPV was examined by SDS-PAGE and colorimetric assay. One 116-kDa LacZ protein band appeared on the PAGE. The production rate of the $\beta$-galactosidase was approximately 50 international units (IU) per min per ml between 2 to 5 days postinfection (p.i.). The highest activity occurred at five days p.i. was 170 IU/min/$m\ell$. The enzyme activity first appeared about 20 h p.i. as measured by colorimetric assay.

  • PDF

Targeted Gene Disruption and Functional Complementation of Cytochrome P450 Hydroyxlase Involved in Cyclosporin A Hydroxylation in Sebekia benihana

  • Lee, Mi-Jin;Han, Kyu-Boem;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.14-19
    • /
    • 2011
  • A cyclic undecapeptide-family natural product, cyclosporin A (CyA), which is one of the most valuable immunosuppressive drugs, is produced nonribosomally by a multifunctional cyclosporin synthetase enzyme complex in a filamentous fungal strain named Tolypocladium niveum. Previously, structural modifications of cyclosporins such as a regionspecific hydroxylation at the $4^{th}$ N-methyl leucine in a rare actinomycetes called Sebekia benihana were reported to lead to dramatic changes in their bioactive spectra. However, the reason behind this change could not be determined since a system to genetically manipulate S. benihana has not yet been developed. To address this limitation, in this study, we utilized the most commonly practiced gene manipulation techniques including conjugation-based foreign gene transfer-and-expression as well as targeted gene disruption to genetically manipulate S. benihana. Using these optimized genetic manipulation systems, a putative cytochrome P450 hydroxylase (CYP) gene named CYP506, which is involved in CyA hydroxylation in S. benihana, was specifically disrupted and genetically complemented. The S. benihana${\Delta}$CYP506 exhibited a significantly reduced CyA hydroxylation yield as well as considerable yield restoration by functional complementation of the S. benihana CYP506 gene, suggesting that the genetically manipulated S. benihana CYP mutant strains may serve as a more efficient bioconversion host for various valuable metabolites including CyA.

Molecular Cloning and the Nucleotide Sequence of a Bacillus sp. KK-l $\beta$-Xylosidase Gene

  • Chun, Yong-Chin;Jung, Kyung-Hwa;Lee, Jae-Chan;Park, Seung-Hwan;Chung, Ho-Kwon;Yoon, Ki-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.28-33
    • /
    • 1998
  • A gene coding for ${\beta}$-xylosidase from thermophilic xylanolytic Bacillus sp. KK-1 was cloned into Escherichia coli using plasmid pBR322. Recombinant plasmid DNAs were isloated from E. coli clones which were capable of hydrolyzing 4-methylumbelliferyl-${\beta}$-D xylopyranoside. Restriction analysis showed the DNAs to share a common insert DNA. Xylo-oligosaccharides, including xylotriose, xylotetraose, xylopentaose, and xylobiose were hydrolyzed to form xylose as an end product by cell-free extracts of the E. coli clones, confirming that the cloned gene from strain KK-1 is ${\beta}$-xylosidase gene. The ${\beta}$-xylosidase gene of strain KK-1 designated as xylB was completely sequenced. The xylB gene consisted of an open reading frame of 1,602 nucleotides encoding a polypeptide of 533 amino acid residues, and a TGA stop codon. The 3' flanking region contained one stem-loop structure which may be involved in transcriptional termination. The deduced amino acid sequence of the KK-1 ${\beta}$-xylosidase was highly homologous to the ${\beta}$-xylosidases of Bacillus subtilis and Bacillus pumilus, but it showed no similarity to a thermostable ${\beta}$-xylosidase from Bacillus stearothermophilus.

  • PDF

Gene Expression Profiling in the Nematode Caenorhabditis elegans, as a Potential Biomarker for Soil Ecotoxicology (잠재적 생체지표 발굴을 위한 토양선충 Caenorhabditis elegans에서의 유전자 발현 연구)

  • Roh, Ji-Yeon;Choi, Jin-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Monitoring toxicity levels in specific biological compartments is necessary to evaluate the ecotoxicological risk associated with soil environmental pollution. Gene expression, as potential biomarker, is increasingly used as rapid early warning systems in environmental monitoring and ecological risk assessment procedures. Various representative species are currently used for the purpose of assessing soil toxicity, however, investigations on toxicological assessments using endpoint based on gene-level have been limited. In this review, we will present the current trends in organisms and endpoints used in soil toxicity study and report gene expression related to toxicity using soil organism, and C. elegans as promising organisms for this approach.

Enhanced Clavulanic Acid Production in Streptomyces clavuligerus NRRL3585 by Overexpression of Regulatory Genes

  • Hung, Trinh Viet;Ishida, Kenji;Parajuli, Niranjan;Liou, Kwang-Kyoung;Lee, Hei-Chan;Sohng, Jae-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.116-120
    • /
    • 2006
  • We constructed four recombinant plasm ids to enhance the production of clavulanic acid (CA) in Streptomyces clavuligerus NRRL3585: (1) pIBRHL1, which includes ccaR, a pathway-specific regulatory gene involved in cephamycin C and CA biosynthesis; (2) pIBRHL2, containing claR, again a regulatory gene, which controls the late steps of CA biosynthesis; (3) pGIBR containing afsR-p, a global regulatory gene from Streptomyces peucetius; and (4) pKS, which harbors all of the genes (ccaR/ claR/ afsR-p). The plasmids were expressed in S. clavuligerus NRRL3585 along with the $ermE^*$ promoter. All of them enhanced the production of CA; 2.5-fold overproduction for pIBRHL1, 1.5-fold for pIBRHL2, 1.6-fold for pGIBR, and 1.5-fold for pKS compared to the wild type.

Cloud-based Full Homomorphic Encryption Algorithm by Gene Matching

  • Pingping Li;Feng Zhang
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.432-441
    • /
    • 2024
  • To improve the security of gene information and the accuracy of matching, this paper designs a homomorphic encryption algorithm for gene matching based on cloud computing environment. Firstly, the gene sequences of cloud files entered by users are collected, which are converted into binary code by binary function, so that the encrypted text is obviously different from the original text. After that, the binary code of genes in the database is compared with the generated code to complete gene matching. Experimental analysis indicates that when the number of fragments in a 1 GB gene file is 65, the minimum encryption time of the algorithm is 80.13 ms. Aside from that, the gene matching time and energy consumption of this algorithm are the least, which are 85.69 ms and 237.89 J, respectively.

Cadmium Toxicity Monitoring Using Stress Related Gene Expressions in Caenorhabditis elegans

  • Roh, Ji-Yeon;Park, Sun-Young;Choi, Jin-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • The toxicity of cadmium on Caenorhabditis elegans was investigated to identify sensitive biomarkers for environmental monitoring and risk assessment. Stress-related gene expression were estimated as toxic endpoints Cadmium exposure led to an increase in the expression of most of the genes tested. The degree of increase was more significant in heat shock protein-16.1, metallothionein-2, cytochrome p450 family protein 35A2, glutathione S-transferase-4, superoxide dismutase-1, catalase-2, C. elegans p53-like protein-1, and apoptosis enhancer-1 than in other genes. The overall results indicate that the stress-related gene expressions of C. elegans have considerable potential as sensitive biomarkers for cadmium toxicity monitoring and risk assessment.