

www.kips.or.kr Copyright© 2024 KIPS

Cloud-based Full Homomorphic Encryption Algorithm

by Gene Matching

Pingping Li1,* and Feng Zhang2

Abstract

To improve the security of gene information and the accuracy of matching, this paper designs a homomorphic

encryption algorithm for gene matching based on cloud computing environment. Firstly, the gene sequences of

cloud files entered by users are collected, which are converted into binary code by binary function, so that the

encrypted text is obviously different from the original text. After that, the binary code of genes in the database

is compared with the generated code to complete gene matching. Experimental analysis indicates that when the

number of fragments in a 1 GB gene file is 65, the minimum encryption time of the algorithm is 80.13 ms.

Aside from that, the gene matching time and energy consumption of this algorithm are the least, which are

85.69 ms and 237.89 J, respectively.

Keywords

Binary System, Cloud Computing, Full Homomorphic Encryption Algorithm, Gene Matching

1. Introduction

With the reduction of “cloud” network computing costs, cloud computing technology is becoming

more mature. In this context, users do not carry their own biological information genetic data, but instead

store more biological information genetic data and services on cloud servers. However, using this method

carries certain risks. Bioinformatics genetic data can be directly exposed to external attackers and staff

of "cloud" network service providers, so the user's private biological information may be leaked or abused

[1]. Currently, to improve the reliability of biological data stored in the manager, most servers use

encryption schemes to store and manage biological data. However, with the development of science and

technology and the social progress, the amount of data generated every day is increasing, and the

information related to people's lives is exploding [2, 3].

The structure of this paper is as follows: The first part is the introduction and the contents of references;

the second part is the research methods and materials, mainly including the homomorphic encryption

algorithm and the principle of gene information coding and matching. The third part is the experiment

part, which mainly compares the proposed method with the traditional encryption algorithm. The last part

is the conclusion, which mainly summarizes the results of the experiment.

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received December 21, 2022; first revision February 16, 2023; accepted March 11, 2023.
*Corresponding Author: Pingping Li (lipingping10489@163.com)
1 Institute of Digital Information Technology, Zhejiang Technical Institute of Economics, Hangzhou, China (lipingping10489@163.com)
2 Applied Engineering College, Zhejiang Business College, Hangzhou, China (13867193665@163.com)

J Inf Process Syst, Vol.20, No.4, pp.432~441, August 2024

https://doi.org/10.3745/JIPS.03.0199 ISSN 2092-805X (Electronic)

Pingping Li and Feng Zhang

J Inf Process Syst, Vol.20, No.4, pp.432~441, August 2024 | 433

2. Materials and Methods

2.1 Full Homomorphic Encryption Algorithm

To improve the security of gene matching based on cloud computing, this paper uses homomorphic

encryption algorithm to encrypt cloud-based genes. Firstly, the encryption principle and steps of the

homomorphic encryption algorithm are analyzed in detail. After that, the overall situation of homo-

morphic encryption is analyzed. Finally, homomorphic encryption is applied to gene matching based on

cloud computing. The detailed analysis results are as follows.

2.1.1 The principle of full homomorphic encryption algorithm

Assuming that the encryption function is ��; The decryption function is ��; The operation is �, and

the plaintext is � = ���,��,��, …��	 , then the calculation formula for the full homomorphic

encryption algorithm is:

 �
�������,��,��, …��	� = �
������,��,��, …��	�. (1)

Meanwhile, a homomorphic encryption scheme is mainly composed of four algorithms. The four

algorithms are the key part, the encryption part, the decryption part and the additional evaluation part,

respectively[4,5]. The detailed analysis results of the four parts are as follows:

 Key part (Key): The public key �� and the private key ��are generated according to the given

parameter �.

 Encryption part (Enc): Encrypt the plaintext � with the public key �� to obtain the encrypted

ciphertext �.

 Decryption part (Dec): Decrypt the ciphertext �with the private key to obtain plaintext M .

 Evaluate: Outputs � input circuits C (composed of mod2 addition gates and multiplication gates)

and public key ��, as well as ciphertext �corresponding to plaintext [6,7]. The extra evaluation

section can be used to formulate the output of the additional evaluation section, and the output

formula is ��������(��,�, �).

2.1.2 The step full homomorphic encryption algorithm

Before using the full homomorphic encryption algorithm for encryption, some homomorphic some-

what scheme needs to be constructed to change the modulo 2 operation to the modulo 4 operation, so that

the 2-bit ciphertext can be encrypted at one time[8]. Let � be the security parameter, and the specific

construction process of the full homomorphic encryption algorithm is as follows.

- KeyGen (�): A� bit key � is generated by the security parameter �.

- �������(��,�) : Encryption � = {00,01,10,11} yields � = � + 4� + �� . Wherein, � is the

randomly generated integer of ; represents the noise length; �is a randomly generated �-bit

integer in the encryption process.

- �������(��, �): � = (�mod�)mod4.

The value of �mod�is noise, that is, only when � + 4� <
�

�
, �mod� = � + 4�, then the decryption

result obtained is correct. According to the security parameters, as long as it is a "fresh" ciphertext, the

Cloud-based Full Homomorphic Encryption Algorithm by Gene Matching

434 | J Inf Process Syst, Vol.20, No.4, pp.432~441, August 2024

plaintext obtained after decryption by the full homomorphic encryption algorithm is always established

[9]. In the above process, KeyGen (�) represents the key generation algorithm; �������(��,�) 22

represents the encryption algorithm; �������(��, �) represents the decryption algorithm. To analyze the

homomorphism of the full homomorphic encryption algorithm, the homomorphism of the full

homomorphic encryption algorithm is verified. The specific verification process is as follows:

 �� = �� + 4�� + ��� (2)
 �� = �� + 4�� + ��� (3)
 !��� + ��	mod�"mod4 = !�� +�� + 4��� + ��	"mod4 = �� +�� (4)
 !��� ∗ ��	mod�"mod4 = !�� +�� + 4����� + 4���� +����	"mod4 = ���� (5)

The above formula indicates that the ciphertext in the process of full homomorphic encryption

algorithm is "fresh," so ciphertext addition and multiplication satisfy the homomorphism. However, the

noise generated in the continuous operation will become larger [10].

The steps of the full homomorphic encryption algorithm are as follows:

- KeyGen (�): A �-bit private key is randomly generated during key generation �. Let #� = ���, and #� be an odd number;���#�	 can be divisible by 4. According to the some scheme, 2√% ciphertexts

generated by 0 encryption is generated &'0,1(, 1 ≤) ≤ √% , , and #�,� = ���,� + 4��,� . The final

public key size is 2√%, and �� = *#�, #�,�, #�,�, #�,�, #�,�, … , #√	,�, #√	,�+.
- �������(��,�): % dimensional vector & = *&�,
+�1 ≤), , ≤ √%, &�,
 ∈ {0,1}�, and the fixed large

prime number � is randomly generated (the number of bits in � is greater than the number of digits

in �). Plaintext � ∈ {00,01,10,11}, the expression of ciphertext � is:

� = -� + 4� + � + 4. /
���,
�√	

&�,
#�,�#
,�0�12#� (6)

- ��#����(��, �) : Decrypting the ciphertext, the resulting plaintext is � = �#mod�	mod4 ;the

purpose of modularizing #� in the encryption process is to reduce the ciphertext size.

2.2 Cloud Computing based Full Homomorphic Encryption Algorithm by Gene

Matching

The overall flow of cloud computing based full homomorphic encryption algorithm by gene matching

is as shown in Fig. 1.

In Fig. 1, the input of the full homomorphic encryption algorithm by gene matching is divided into two

parts. The first part is to collect the gene sequence input by the user, and the other part is to read the gene

sequence stored in the cloud file. The two parts correspond to the gene sequence to be searched and the

database gene sequence, respectively. The default search gene is a specific gene with a certain length. If

the specific length range is 50, the length of the gene to be searched is also within this length range. The

gene to be searched is encoded and encrypted, which is decrypted after being transmitted to the terminal.

The degree of agreement between the decrypted results and the genes in the gene pool is analyzed to find

Pingping Li and Feng Zhang

J Inf Process Syst, Vol.20, No.4, pp.432~441, August 2024 | 435

the most compatible genes for gene matching. The output shows the final matching result. The various

parts of the algorithm flow are analyzed in following detail.

Fig. 1. Flow chart of full homomorphic encryption algorithm by gene matching.

3. Results and Discuss

3.1 Encryption Decryption Effect

The MATLAB program is applied to collect the gene sequence input by the user and read the code

book generated by the gene sequence stored in the cloud file.Set the safety parameters of the system � =

4 , � = 64, = 4,% = 1028. The experiment is conducted on the VMware Workstation 9.0.0 build-

812388 virtual machine platform with Ubuntu 12.10 as the operating system. This platform has a 20.3GB

hard drive and 772MB of memory.The dataset used in this experiment is from the open data provided by

the biological information database of DNADataBank of Japan, European Bioinformatics Institute, and

National Center for Biotechnology Information. It mainly consists ofserialized data of DNA molecules,

ranging in length from 1,950 billion to 595 million. The personal biological information gene data

segment is selected as the basic dataset of the experiment. Select fragments as experimental data.

Through analysis, the XOR operation is performed on the possible combinations of the four bases to

obtain a truth. By observing Table 1, it can be seen that the XOR operation results of A and T, C and G

are all 1, while any other combination cannot guarantee that the result is all 1. Demonic simulation results

of encryption and decryption are shown in Fig. 2.

Table 1. Redesigned coding format

Base abbreviation Binary code

A 00

C 10

G 01

T 11

Cloud-based Full Homomorphic Encryption Algorithm by Gene Matching

436 | J Inf Process Syst, Vol.20, No.4, pp.432~441, August 2024

Fig. 2 demonstrates that after the results of the encryption process are summarized, the obtained

ciphertext is 011000110011110100100100001010110111110101100010010110000001. The decrypted

plaintext can be obtained by the same reason. Compared with the original plaintext binary sequence and

the decrypted binary sequence, the two are almost identical, which indicates that the encryption and

decryption process of the algorithm is more accurate. Meanwhile, from the security analysis in the process

of encryption and decryption, it is found that only the recipient and the sender have the DNA codebook

under the algorithm. Therefore, the attacker cannot select the key from the password book, which

guarantees the reliability of the key, and the attacker's chance of brute force cracking is small.

(a) (b)

Fig. 2. Analysis of encryption and decryption effect: (a) key simulation results and (b) ciphertext

decryption results.

3.2 Encryption Efficiency

The algorithm of this paper is applied to encrypt the cloud-based genes that need to be matched, as

well as to count the time of encrypting gene files in different gene file fragments. In the meantime, the

overall acceleration ratio in the encryption process is calculated. The encryption efficiency of the

algorithm, the genetic matching based on symmetric encryption algorithm and the genetic matching based

on asymmetric algorithm are compared. The comparison results are shown in Table 2.

Table 2 indicates that under the same file size of the same algorithm, as the number of gene files

increases, the encryption time is gradually shortens; the overall acceleration ratio gradually increases.

When the number of fragments of the gene file is the same, the encryption time of the algorithm is the

shortest and the acceleration of the algorithm is relatively large. When the number of 1 GB gene files is

65, the algorithm has the shortest encryption time and the maximum overall acceleration ratio. The

encryption time is as short as 80.13 ms, and the overall acceleration ratio is up to 3.6. That is to say, the

encryption efficiency of the algorithm is accelerated, which can significantly improve the speed of cloud-

based gene matching. This is because the homomorphic encryption algorithm designed in this paper

converts gene information into binary values, directly encrypting 2-bit ciphertext at once, greatly

accelerating the encryption process and improving the encryption efficiency.

3.3 Actual Matching Effect

To verify the gene matching effect in the cloud computing environment under the algorithm, a large

number of genes need to be used for experimental analysis. The results of the analysis are as shown in

Fig. 3.

Pingping Li and Feng Zhang

J Inf Process Syst, Vol.20, No.4, pp.432~441, August 2024 | 437

Table 2. Statistical results under the number of slices of different documents

Type of algorithm
Number of

slices

Encryption time (ms) Overall acceleration ratio SP

1 GB 2 GB 3 GB 1 2 3

This paper algorithm

1 316.12 609.31 903.79 1.1 1.1 1.1

5 106.18 206.69 310.05 3.2 3.2 3.2

9 97.25 192.01 308.52 3.3 3.2 2.9

17 84.36 161.28 245.31 3.8 3.7 3.6

34 83.27 157.74 241.87 3.7 3.7 3.6

49 81.56 152.52 236.82 3.7 3.7 3.6

65 80.13 145.68 231.83 3.7 3.7 3.6

Gene matching based on

symmetric encryption

algorithm

1 472.55 740.56 1005.24 0.9 0.9 0.9

5 262.43 337.94 411.5 3.0 3.0 3.0

9 253.61 323.26 409.97 3.1 3.0 2.7

17 237.96 292.53 346.76 3.6 3.5 3.4

34 235.74 289.99 341.32 3.5 3.4 3.3

49 229.66 284.77 337.27 3.5 3.4 3.3

65 224.55 278.93 334.28 3.5 3.4 3.3

Gene matching based on

asymmetric

encryption algorithm

1 603.82 869.35 1104.28 0.6 0.6 0.6

5 393.91 466.73 510.26 2.7 2.7 2.7

9 384.86 452.05 508.73 2.8 2.7 2.4

17 369.21 421.32 445.52 3.3 3.2 3.1

34 351.98 417.78 441.08 3.2 3.1 3.0

49 347.07 412.56 437.03 3.2 3.1 3.0

65 343.83 409.72 431.04 3.2 3.1 3.0

 (a)

 (b) (c)

Fig. 3. Analysis of matching results: (a) original gene chain, (b) original gene chain DNA sequence, and

(c) match result.

Cloud-based Full Homomorphic Encryption Algorithm by Gene Matching

438 | J Inf Process Syst, Vol.20, No.4, pp.432~441, August 2024

As shown in Fig. 3, comparing Fig. 3(a) with Fig. 3(c), it can be seen that the original gene chains all

appear in the output gene chains, indicating that the algorithm can match a part of the original gene chains

to the complete gene chains in the cloud computing environment. Comparing the matching results with

the actual results, as shown in Fig. 3(b), it is found that the genes matched by the algorithm are consistent

with the actual genes, indicating that the algorithm has high matching accuracy. This is also because the

homomorphic encryption algorithm in this paper can simplify the expression of ciphertext by using binary

values, and achieve high-precision matching.

3.4 Matching Performance

To detect the gene matching performance in the cloud computing environment when using the

algorithm, it is required to analyze the time, energy consumption and accuracy of gene matching. The

three algorithms used to compare the time and energy consumption of gene matching under different

gene sequence numbers, and the results are shown in Table 3.

Table 3. Results of time and energy consumption analysis of gene matching

Type of algorithm Text size (GB) Time (ms) Energy consumption (J)

This paper algorithm 1 85.69 237.89

2 146.89 241.58

3 231.92 247.63

4 235.68 249.36

5 237.25 251.48

6 241.29 253.57

7 246.87 259.86

8 249.63 261.43

9 252.36 263.56

10 259.48 267.89

Gene matching based on

symmetric encryption

algorithm

1 102.53 263.87

2 163.72 267.56

3 248.73 273.61

4 252.49 275.34

5 254.06 277.46

6 258.23 279.55

7 263.68 285.84

8 266.44 287.41

9 269.17 289.54

10 276.29 293.87

Gene matching based on

asymmetric encryption

algorithm

1 114.09 295.44

2 175.28 299.13

3 260.29 305.18

4 264.05 306.91

5 265.62 309.03

6 269.79 311.12

7 275.24 317.41

8 278.63 318.98

9 280.73 321.11

10 287.85 325.44

Pingping Li and Feng Zhang

J Inf Process Syst, Vol.20, No.4, pp.432~441, August 2024 | 439

From Table 3, as the size of the gene sequence increases, the matching time of the three algorithms is

also increasing. At the same gene sequence size, the gene matching time and energy consumption of the

algorithm are the least.

As shown in Fig. 4, the method in this paper is finally compared with the traditional homomorphic

encryption algorithm, A* algorithm and regularized homomorphic encryption algorithm in the dataset.

As the number of characters retrieved by matching increases, the matching speed of all methods is

increasing. However, when the number of characters is between 600 and 5,400, the method proposed in

this paper is the least time-consuming.

Fig. 4. Status analysis of matching time increasing with the number of characters under different

algorithms.

5. Conclusion

To improve the security and accuracy of gene matching, this paper studies the cloud-based homo-

morphic gene matching encryption algorithm. When the encrypted gene is transmitted to the matching

terminal, it is decrypted. The decrypted gene is compared with the gene in the database and the binary

sequence is compared to achieve the purpose of gene matching. Experimental analysis shows that the

algorithm can significantly improve the safety of gene matching. Meanwhile, the algorithm has shorter

encryption and decryption time in the gene matching process, which can greatly reduce the gene matching

time. Through the actual test, it is found that the gene matching effect is better under the algorithm and

the matching accuracy is higher. There are still some limitations in this paper, and in the future research

work, two aspects should be noticed: first, the distributed computing model will be studied to further

improve the efficiency of fully homomorphic encryption computing; secondly, the integration of different

privacy protection principles, anonymous technology and homomorphic encryption technology will be

further studied.

Conflict of Interest

The authors declare that they have no competing interests.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

600 1200 1800 2400 3000 3600 4200 4800 5400

Traditional A*

Traditional

homomorphic

encryption

Regularized

homomorphic

encryption

Number of

characters

T
im

e
s

（
m
s
）

Methods in this

paper

Cloud-based Full Homomorphic Encryption Algorithm by Gene Matching

440 | J Inf Process Syst, Vol.20, No.4, pp.432~441, August 2024

Funding

The research is supported by Basic Public Welfare Research Project of Zhejiang Province - Research

on Cooperative Task Allocation Mechanism in Heterogeneous Multi - Mobile Robot System (No.

LGG19F020009).

References

[1] Y. Li, J. H. Park, and B. S. Shin, “A shortest path planning algorithm for cloud computing environment based

on multi-access point topology analysis for complex indoor spaces,” The Journal of Supercomputing, vol. 73,

pp. 2867-2880, 2017. https://doi.org/10.1007/s11227-016-1650-x

[2] M. B. Karimi, A. Isazadeh, and A. M. Rahmani, “QoS-aware service composition in cloud computing using

data mining techniques and genetic algorithm,” The Journal of Supercomputing, vol. 73, pp. 1387-1415,

2017. https://doi.org/10.1007/s11227-016-1814-8

[3] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homomorphic encryption schemes: theory and

implementation,” ACM Computing Surveys (CSUR), vol. 51, no. 4, article no. 79, 2018.

https://doi.org/10.1145/3214303

[4] D. Porumbel, “Ray projection for optimizing polytopes with prohibitively many constraints in set-covering

column generation,” Mathematical Programming, vol. 155, pp. 147-197, 2016. https://doi.org/10.1007/s10107-

014-0840-7

[5] A. M. Yakubu and Y. P. P. Chen, “Ensuring privacy and security of genomic data and functionalities,”

Briefings in Bioinformatics, vol. 21, no. 2, pp. 511-526, 2020. https://doi.org/10.1093/bib/bbz013

[6] A. Mittos, B. Malin, and E. De Cristofaro, “Systematizing genome privacy research: a privacy-enhancing

technologies perspective,” Proceedings on Privacy Enhancing Technologies, vol. 2019, no. 1, pp. 87-107,

2019. https://doi.org/10.2478/popets-2019-0006

[7] M. Hosseini, D. Pratas, and A. J. Pinho, “Cryfa: a secure encryption tool for genomic data,” Bioinformatics,

vol. 35, no. 1, pp. 146-148, 2019. https://doi.org/10.1093/bioinformatics/bty645

[8] Z. Hu, S. Liu, and K. Chen, “Privacy-preserving location-based services query scheme against quantum

attacks,” IEEE Transactions on Dependable and Secure Computing, vol. 17, no. 5, pp. 972-983, 2020.

https://doi.org/10.1109/TDSC.2018.2831199

[9] M. N. Sadat, M. M. Al Aziz, N. Mohammed, F. Chen, X. Jiang, and S. Wang, “SAFETY: secure gwAs in

federated environment through a hybrid solution,” IEEE/ACM Transactions on Computational Biology and

Bioinformatics, vol. 16, no. 1, pp. 93-102, 2019. https://doi.org/10.1109/TCBB.2018.2829760

[10] T. Gao and F. Li, “PHDP: preserving persistent homology in differentially private graph publications,” in

Proceedings of IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 2019,

pp. 2242-2250. https://doi.org/10.1109/INFOCOM.2019.8737584

Pingping Li https://orcid.org/0000-0002-8047-5289
She was born in March 1981. Her title is senior engineer. She received a bachelor's

degree in information engineering from Zhejiang University in 2002. In 2007, she

received a master's degree in software engineering from Hangzhou Dianzi University.

She is now working in Zhejiang Technical Institute of Economics. Her research fields

include artificial intelligence, data processing, etc. She has published 5 academic

papers and participated in 6 research projects.

Pingping Li and Feng Zhang

J Inf Process Syst, Vol.20, No.4, pp.432~441, August 2024 | 441

Feng Zhang https://orcid.org/0000-0002-3863-2826
She was born on September 23, 1970. Her title is professor. She holds Master of

Engineering degree from the Changchun Institute of Optics, Fine Mechanics and

Physics, Chinese Academy of Sciences in 1995, majoring in electromechanical control

and automation. She is now working at Zhejiang Business College. Her research

interests focus on artificial intelligence. She has published 5 academic papers and

participated in 5 research projects.

