Gene Expression Profiling in the Nematode Caenorhabditis elegans, as a Potential Biomarker for Soil Ecotoxicology

잠재적 생체지표 발굴을 위한 토양선충 Caenorhabditis elegans에서의 유전자 발현 연구

  • Roh, Ji-Yeon (Faculty of Environmental Engineering, College of Urban Science, University of Seoul) ;
  • Choi, Jin-Hee (Faculty of Environmental Engineering, College of Urban Science, University of Seoul)
  • 노지연 (서울시립대학교 환경공학과) ;
  • 최진희 (서울시립대학교 환경공학과)
  • Published : 2010.03.31

Abstract

Monitoring toxicity levels in specific biological compartments is necessary to evaluate the ecotoxicological risk associated with soil environmental pollution. Gene expression, as potential biomarker, is increasingly used as rapid early warning systems in environmental monitoring and ecological risk assessment procedures. Various representative species are currently used for the purpose of assessing soil toxicity, however, investigations on toxicological assessments using endpoint based on gene-level have been limited. In this review, we will present the current trends in organisms and endpoints used in soil toxicity study and report gene expression related to toxicity using soil organism, and C. elegans as promising organisms for this approach.

Keywords

References

  1. Andre J, Charnock J, Stürzenbaum SR, Kille P, Morgan AJ and Hodson ME. Accumulated metal speciation in earthworm populations with multigenerational exposure to metalliferous soils: cell fractionation and high-energy synchrotron analyses. Environ Sci Technol 2009; 43: 6822-6829. https://doi.org/10.1021/es900275e
  2. Brulle F, Cocquerelle C, Wamalah AN, Morgan AJ, Kille P, Lepretre A and Vandenbulcke F. cDNA cloning and expression analysis of Eisenia fetida (Annelida: Oligochaeta) phytochelatin synthase under cadmium exposure. Ecotoxicol Environ Saf 2008; 71: 47-55. https://doi.org/10.1016/j.ecoenv.2007.10.032
  3. Bur T, Probst A, Bianco A, Gandois L and Crouau Y. Determining cadmium critical concentrations in natural soils by assessing Collembola mortality, reproduction and growth. Ecotoxicol Environ Saf 2010; 73: 415-422. https://doi.org/10.1016/j.ecoenv.2009.10.010
  4. Burgos MG, Winters C, Stürzenbaum SR, Randerson PF, Kille P and Morgan AJ. Cu and Cd effects on the earth-worm Lumbricus rubellus in the laboratory: multivariate statistical analysis of relationships between exposure, biomarkers, and ecologically relevant parameters. Environ Sci Technol 2005; 39: 1757-1763. https://doi.org/10.1021/es049174x
  5. Cortet J, Gomot-De Vauflery A, Poinsot-Balaguer N, Gomot L, Texier C and Cluzeau D. The use of invertebrate soil fauna in monitoring pollutant effects utilisation de la faune invertebree du sol comme bio-indicateur des effets des polluants. Eur J Soil Biol 1999; 35: 115-134. https://doi.org/10.1016/S1164-5563(00)00116-3
  6. Cui Y, McBride SJ, Boyd WA, Alper S and Freedman JH. Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. Genome Biol 2007; 8: R122. https://doi.org/10.1186/gb-2007-8-6-r122
  7. Cutter AD, Dey A and Murray RL. Evolution of the C. elegans genome, Mol Biol Evol 2009; 26: 1199-1234. https://doi.org/10.1093/molbev/msp048
  8. De Boer TE, Holmstrup M, van Straalen NM and Roelofs D. The effect of soil pH and temperature on Folsomia candida transcriptional regulation. J Insect Physiol 2010; 56: 350-355. https://doi.org/10.1016/j.jinsphys.2009.11.004
  9. De Silva PM and van Gestel CA. Comparative sensitivity of Eisenia andrei and Perionyx excavatus in earthworm avoidance tests using two soil types in the tropics. Chemosphere 2009; 77: 1609-1613. https://doi.org/10.1016/j.chemosphere.2009.09.034
  10. Demuynck S, Grumiaux F, Mottier V, Schikorski D, Lemiere S and Lepretre A. Cd/Zn exposure interactions on metallothionein response in Eisenia fetida (Annelida, OligoOligochaeta). Comp Biochem Physiol C Toxicol Pharmacol 2007; 145: 658-668. https://doi.org/10.1016/j.cbpc.2007.03.001
  11. Demuynck S, Grumiaux F, Mottier V, Schikorski D, Lemiere S, Lepretre A. Metallothionein response following cadmium exposure in the oligochaete Eisenia fetida. Comp Biochem Physiol C Toxicol Pharmacol 2006; 144: 34-46. https://doi.org/10.1016/j.cbpc.2006.05.004
  12. Dong J, Boyd WA and Freedman JH. Molecular characterization of two homologs of the Caenorhabditis elegans cadmium-responsive gene cdr-1: cdr-4 and cdr-6. J Mol Biol 2008; 376: 621-633. https://doi.org/10.1016/j.jmb.2007.11.094
  13. Fauser P, Thomsen M, Scott-Fordsmand J and Sorensen PB. Risk of five polycyclic aromatic hydrocarbons in a terrestrial environment: influence of data variability. Environ Toxicol Chem 2005; 24: 995-1003. https://doi.org/10.1897/04-323R.1
  14. Fernandez MD, Babin M and Tarazona JV. Application of bioassays for the ecotoxicity assessment of contaminated soils. Methods Mol Biol 2010; 599:235-262. https://doi.org/10.1007/978-1-60761-439-5_15
  15. Forbes VE and Forbes TL. Ecotoxicology in theory and practice, Chapman and Hall, London. 1994.
  16. Frampton GK, Jansch S, Scott-Fordsmand JJ, Rombke J and Van den Brink PJ. Effects of pesticides on soil invertebrates in laboratory studies A review and analysis using species sensitivity distributions. Environ Toxicol Chem 2006; 25: 2480-2489. https://doi.org/10.1897/05-438R.1
  17. Gibson G. Microarrays in ecology and evolution: a preview. Mol Ecol 2002; 11: 17-24. https://doi.org/10.1046/j.0962-1083.2001.01425.x
  18. Gong P, Guan X, Inouye LS, Pirooznia M, Indest KJ, Athow RS, Deng Y and Perkins EJ. Toxicogenomic analysis provides new insights into molecular mechanisms of the sublethal toxicity of 2,4,6-trinitrotoluene in Eisenia fetida. Environ Sci Technol 2007; 41: 8159-8202. https://doi.org/10.1021/es070850f
  19. Hasegawa K, Miwa S, Tsutsumiuchi K and Miwa J. Allyl isothiocyanate that induces GST and UGT expression confers oxidative stress resistance on C. elegans, as demonstrated by nematode biosensor. PLoS One 2010; 5: e9267. https://doi.org/10.1371/journal.pone.0009267
  20. Hoss S, Jansch S, Moser T, Junker T and Rombke J. Assessing the toxicity of contaminated soils using the nematode Caenorhabditis elegans as test organism. Ecotoxicol Environ Saf 2009; 72: 1811-1818. https://doi.org/10.1016/j.ecoenv.2009.07.003
  21. Hurdzan CM and Lanno RP. Determining exposure dose in soil: the effect of modifying factors on chlorinated benzene toxicity to earthworms. Chemosphere 2009; 76: 946-951. https://doi.org/10.1016/j.chemosphere.2009.04.036
  22. Ibiam U and Grant A. RNA/DNA ratios as a sublethal endpoint for large-scale toxicity tests with the nematode Caenorhabditis elegans. Environ Toxicol Chem 2005; 24: 1155-1159. https://doi.org/10.1897/04-262R.1
  23. ISO (International Organization for Standardization). Soil Quality Effects of Pollutants on Earthworms (Eisenia fetida). Part 1 Determination of Acute Toxicity Using Artificial Soil Substrate. ISO 11268-1. Geneva Switzerland. ISO 1993.
  24. ISO (International Organization for Standardization). Soil Quality Effects of Pollutants on Earthworms (Eisenia fetida). Part 2 Determination of Effect on Reproduction. ISO 11268-2. Geneva Switzerland. ISO 1998.
  25. ISO (International Organization for Standardization). Draft ISO-17512 Soil Quality Avoidance test for evaluating the quality of soils and the toxicity of chemicals. Test with earthworms (Eisenia fetida/andrei). Geneve Switzerland. 2006.
  26. Janssens TK, Marien J, Cenijn P, Legler J, van Straalen NM and Roelofs D. Recombinational micro-evolution of functionally different metallothionein promoter alleles from Orchesella cincta. BMC Evol Biol 2007; 7: 88. https://doi.org/10.1186/1471-2148-7-88
  27. Kim SJ and Choung SY. Whole genomic expression analysis of octachlorostyrene-induced chronic toxicity in Caenorhabditis elegans. Arch Pharm Res 2009; 32: 1585-1592. https://doi.org/10.1007/s12272-009-2111-3
  28. Kim Y and Sun H. Functional genomic approach to identify novel genes involved in the regulation of oxidative stress resistance and animal lifespan. Aging Cell 2007; 6: 489-503. https://doi.org/10.1111/j.1474-9726.2007.00302.x
  29. Kobeticva K, Bezchlebova J, Lana J, Sochova I and Hofman J. Toxicity of four nitrogen-heterocyclic polyaromatic hydrocarbons (NPAHs) to soil organisms. Ecotoxicol Environ Saf 2008; 71: 650-660. https://doi.org/10.1016/j.ecoenv.2008.01.019
  30. Kwon JY, Hong M, Choi MS, Kans S, Duke K, Kim S, Lee S and Lee J. Ethanol-response genes and their regulation analyzed by a microarray and comparative genomic approach in the nematode Caenorhabditis elegans. Genomics 2004; 83: 600-614. https://doi.org/10.1016/j.ygeno.2003.10.008
  31. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M and Meyer JN. Caenorhabditis elegans: an Emerging Model in Biomedical and Environmental, Toxicol Sci 2008; 106: 5-28. https://doi.org/10.1093/toxsci/kfn121
  32. Lewis JA, Szilagyi M, Gehman E, Dennis WE and Jackson DA. Distinct patterns of gene and protein expression elicited by organophosphorus pesticides in Caenorhabditis elegans. BMC Genomics 2009; 10:202. https://doi.org/10.1186/1471-2164-10-202
  33. Liang SH, Jeng YP, Chiu YW, Chen JH, Shieh BS, Chen CY and Chen CC. Cloning, expression, and characterization of cadmium-induced metallothionein-2 from the earthworms Metaphire posthuma and Polypheretima elongate. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149: 349-357. https://doi.org/10.1016/j.cbpc.2008.09.004
  34. Lokke H and van Gestel CAM. Handbook of soil invertebrate toxicity tests. Chichester' John Wiley and Sons. 1998.
  35. Loureiro S, Amorim MJ, Campos B, Rodrigues SM and Soares AM. Assessing joint toxicity of chemicals in Enchytraeus albidus (Enchytraeidae) and Porcellionides pruinosus (Isopoda) using avoidance behaviour as an endpoint. Environ Pollut 2009; 157: 625-636. https://doi.org/10.1016/j.envpol.2008.08.010
  36. Ma H, Bertsch PM, Glenn TC, Kabengi NJ and Williams PL. Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 2009; 28: 1324-1330. https://doi.org/10.1897/08-262.1
  37. Menzel R, Swain SC, Hoess S, Claus E, Menzel S, Steinberg CE, Reifferscheid G and Sturzenbaum SR. Gene expression profiling to characterize sediment toxicity--a pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genomics 2009; 10: 160. https://doi.org/10.1186/1471-2164-10-160
  38. Menzel R, Yeo HL, Rienau S, Li S, Steinberg CE and Sturzenbaum SR. Cytochrome P450s and short-chain dehydrogenases mediate the toxicogenomic response of PCB52 in the nematode Caenorhabditis elegans. J Mol Biol 2007; 370: 1-3. https://doi.org/10.1016/j.jmb.2007.04.058
  39. Morgan AJ, Sturzenbaum SR, Winters C, Grime GW, Aziz NA and Kille P. Differential metallothionein expression in earthworm (Lumbricus rubellus) tissues. Ecotoxicol Environ Saf 2004; 57: 11-19. https://doi.org/10.1016/j.ecoenv.2003.08.022
  40. Nadeau D, Corneau S, Plante I, Morrow G and Tanguay RM. Evaluation for Hsp70 as a biomarker of effect of pollutants on the earthworm Lumbricus terrestris. Cell Stress Chaperones 2001; 6: 153-163. https://doi.org/10.1379/1466-1268(2001)006<0153:EFHAAB>2.0.CO;2
  41. Nakamori T, Fujimori A, Kinoshita K, Ban-Nai T, Kubota Y, Yoshida S. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida. Environ Pollut 2009; doi:10.1016/j.envpol.2009.11.022
  42. Newman MC and Jagoe CH. Ecotoxicology A hierachical treatment. CRC press, New York. 1996.
  43. Newman MC and Unger MA. Fundamentals of ecotoxicology. 2nd CRC press LLC Boca Raton. 2003.
  44. Nota B, Bosse M, Ylstra B, van Straalen NM, Roelofs D. Transcriptomics reveals extensive inducible biotransformation in the soil-dwelling invertebrate Folsomia candida exposed to phenanthrene. BMC Genomics 2009; 10: 236. https://doi.org/10.1186/1471-2164-10-236
  45. Nota B, Timmermans MJ, Franken O, Montagne-Wajer K, Marien J, De Boer ME, De Boer TE, Ylstra B, Van Straalen NM and Roelofs D. Gene expression analysis of collembola in cadmium containing soil. Environ Sci Technol 2008; 42: 8152-8157. https://doi.org/10.1021/es801472r
  46. Nota B, van Straalen NM, Ylstra B and Roelofs D. Gene expression microarray analysis of heat stress in the soil invertebrate Folsomia candida. Insect Mol Biol 2010; doi: 10.1111/j.1365-2583.2009.00990.
  47. OECD Guidelines for Testing of Chemicals Earthworm Reproduction Test. OECD Guideline No.222. Paris France. OECD, 2004.
  48. OECD Guidelines for Testing of Chemicals: Earthworm Acute Toxicity Test. OECD Guideline No. 207. Paris France. OECD, 1984.
  49. Owen J, Hedley BA, Svendsen C, Wren J, Jonker MJ, Hankard PK, Lister LJ, Sturzenbaum SR, Morgan AJ, Spurgeon DJ, Blaxter ML and Kille P. Transcriptome profiling of developmental and xenobiotic responses in a keystone soil animal, the oligochaete annelid Lumbricus rubellus. BMC Genomics 2008; 9: 266. https://doi.org/10.1186/1471-2164-9-266
  50. Reichert K and Menzel R. Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genome microarray. Chemosphere 2005; 61: 229-237. https://doi.org/10.1016/j.chemosphere.2005.01.077
  51. Ricketts HJ, Morgan AJ, Spurgeon DJ and Kille P. Measurement of annetocin gene expression: a new reproductive biomarker in earthworm ecotoxicology. Ecotoxicol Environ Saf 2004; 57: 4-10. https://doi.org/10.1016/j.ecoenv.2003.08.008
  52. Roh JY and Choi J. Ecotoxicological evaluation of chlorpyrifos exposure on the nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 2008; 71: 483-489. https://doi.org/10.1016/j.ecoenv.2007.11.007
  53. Roh JY, Jung IH, Lee JY and Choi J. Toxic effects of di (2-ethylhexyl)phthalate on mortality, growth, reproduction and stress-related gene expression in the soil nematode Caenorhabditis elegans. Toxicology 2007; 237: 126-133. https://doi.org/10.1016/j.tox.2007.05.008
  54. Roh JY, Lee J and Choi J. Assessment of stressrelated gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: a potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environ Toxicol Chem 2006; 25: 2946-2956. https://doi.org/10.1897/05-676R.1
  55. Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY and Choi J. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 2009; 43: 3933-3940. https://doi.org/10.1021/es803477u
  56. Roh JY, Park YK, Park KS, Choi J. Ecotoxicological investigation of $CeO_{2}$ and $TiO_{2}$ nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxical Pharmacol 2010; 29: 167-172. https://doi.org/10.1016/j.etap.2009.12.003
  57. Scott-Fordsmand JJ, Maraldo K and van den Brink PJ. The toxicity of copper contaminated soil using a gnotobiotic soil multi-species test system (SMS). Environ Int 2008; 34: 524-530. https://doi.org/10.1016/j.envint.2007.11.008
  58. Spurgeon DJ, Lofts S, Hankard PK, Toal M, McLellan D, Fishwick S and Svendsen C. Effect of pH on metal speciation and resulting metal uptake and toxicity for earth-worms. Environ Toxicol Chem 2006; 25: 788-796. https://doi.org/10.1897/05-045R1.1
  59. Spurgeon DJ, Ricketts H, Svendsen C, Morgan AJ and Kille P. Hierarchical responses of soil invertebrates (earth-worms) to toxic metal stress. Environ Sci Technol 2005; 39: 5327-5334. https://doi.org/10.1021/es050033k
  60. Spurgeon DJ, Sturzenbaum SR, Svendsen C, Hankard PK, Morgan AJ, Weeks JM and Kille P. Toxicological, cellular and gene expression responses in earthworms exposed to copper and cadmium. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138: 11-21. https://doi.org/10.1016/j.cca.2004.04.003
  61. Steinberg CE, Sturzenbaum SR and Menzel R. Genes and environment-striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci Total Environ 2008; 400: 142-161. https://doi.org/10.1016/j.scitotenv.2008.07.023
  62. Svendsen C, Owen J, Kille P, Wren J, Jonker MJ, Headley BA, Morgan AJ, Blaxter M, Strzenbaum SR, Hankard PK, Lister LJ and Spurgeon DJ. Comparative transcriptomic responses to chronic cadmium, fluoranthene, and atrazine exposure in Lumbricus rubellus. Environ Sci Technol 2008; 42: 4208-4214. https://doi.org/10.1021/es702745d
  63. Timmermans MJ, Ellers J, Roelofs D and van Straalen NM. Metallothionein mRNA expression and cadmium tolerance in metal-stressed and reference populations of the springtail Orchesella cincta. Ecotoxicology 2005; 14: 727-739. https://doi.org/10.1007/s10646-005-0020-x
  64. Udovic M, Drobne D and Lestan D. Bioaccumulation in Porcellio scaber (Crustacea, Isopoda) as a measure of the EDTA remediation efficiency of metal-polluted soil. Environ Pollut 2009; 157: 2822-2829. https://doi.org/10.1016/j.envpol.2009.04.023
  65. Wilding CS, Trikic MZ, Hingston JL, Copplestone D and Janet Tawn E. Mitochondrial DNA mutation frequencies in experimentally irradiated compost worms, Eisenia fetida. Mutat Res 2006; 603: 56-63. https://doi.org/10.1016/j.mrgentox.2005.10.011
  66. Zheng S, Song Y, Qiu X, Sun T, Ackland ML and Zhang W. Annetocin and TCTP expressions in the earthworm Eisenia fetida exposed to PAHs in artificial soil. Ecotoxicol Environ Saf 2008; 71: 566-573. https://doi.org/10.1016/j.ecoenv.2007.10.025