• Title/Summary/Keyword: gene chip

Search Result 255, Processing Time 0.029 seconds

Analysis of Gene Expression in Carcinogen-induced Acute Hepatotoxicity

  • Oh, Jung-Hwa;Park, Han-Jin;Lee, Eun-Hee;Heo, Sun-Hee;Cho, Jae-Woo;Kim, Yong-Bum;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.58-66
    • /
    • 2009
  • The 2-year rodent carcinogenicity test involves long-term, repetitive dosing of animals that is both time consuming and expensive. Alternative approaches have been attempted using specific transgenic or knockout mice or toxicogenomics to predict carcinogenicity without conducting a 2-year rodent test. In addition, toxicogenomic analysis of carcinogen-treated animals could also enhance our understanding of molecular mechanisms and aid in the diagnosis of acute toxicity induced by carcinogens. Therefore, we investigated transcription profiles after administering the carcinogens 4,4-dimethylformamide (DMF) and 4-biphenylamine (ABP). BALB/c male mice were treated once with DMF (650 mg/kg i.p.) or ABP (120 mg/kg p.o.). Standard blood biochemistry and histological changes were observed. Gene expression profiles in the livers of mice treated with either vehicle or the carcinogens were analyzed using the Affymetrix $GeneChip^{(R)}$ assay. In all, 1,474 differentially expressed genes in DMF- or ABP-treated mice were identified as being either up- or down-regulated over 1.5-fold (P< 0.01), and these genes were analyzed using hierarchical clustering and Ingenuity Pathways Analysis. Of these, 107 genes were consistently regulated in both carcinogen-treated groups. Genes associated with cancer were upregulated (Por, S100a10, Tes, Ctcf, Ddx21, Eapp, Nel, and Pa2g4) or downregulated (Cbs and Gch1). Toxicological function analysis also identified genes involved in organ toxicity, including hepatotoxicity. These data may help to identify molecular markers for acute hepatotoxicity induced by carcinogens.

Identification of Gene-based Potential Biomarkers for Cephalexin-induced Nephrotoxicity in Mice

  • Park, Han-Jin;Oh, Jung-Hwa;Hwang, Ji-Yoon;Lim, Jung-Sun;Jeong, Sun-Young;Kim, Yong-Bum;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.193-201
    • /
    • 2006
  • Cephalexin, one of most widely prescribed cephalosporin, has been reported to cause acute renal failure as a side effect in human and experimental animals. Although numerous animal studies have been reported for the cephalosporin nephrotoxicity, the molecular and cellular nephrotoxic mechanisms of cephalexin are still unknown. This investigation evaluated the time-dependent gene expression profile of kidney in mouse during cephalexin induced nephrotoxicity. C57BL/6 female mice were administered either saline or 1,000 mg/kg cephalexin intraperitoneally. Mice were sacrificed at 3, 6, and 24 hr after administration. Blood biochemical and histopathological results indicated cephalexin induced nephrotoxicity. Microarray experiment carried out using Affymetrix $GeneChip^{(R)}$. There were 198 informative genes that were significantly expressed >5-fold versus control at 3, 6, and 24 hr (p<0.01), of which 156 and 42 were up-and down-regulated, respectively. Major classes of up-regulated genes at 3, 6 hr included those involved in MAPK/Jak-STAT signaling pathway and immune response such as cytokine-cytokine receptor interaction and complement and coagulation cascades. At 24 hr, up-regulated genes were mainly involved in regeneration/repair and immune response; down-regulated genes were generally associated with transporters and intermediary metabolism. Among the up-regulated genes at 24 hr, several potential biomarkers on nephrotoxicity such as Kim-1, Fga, Timp1, and Slc34a2 were clustered in a same category. In addition, Tnfrsf12a and Lcn2 which were consistently up-regulated (>5 fold) were also included as potential biomarkers. These results may provide clues for elucidating the mechanism of cephalexin induced nephrotoxicity and evaluating potential biomarkers to assess nephrotoxicity.

Toxicogenomics Study on Carbon Tetrachloride-induced Hepatotoxicity in Mice

  • Jeong, Sun-Young;Lim, Jung-Sun;Hwang, Ji-Yoon;Park, Han-Jin;Cho, Jae-Woo;Song, Chang-Woo;Kim, Yang-Seok;Lee, Wan-Seon;Moon, Jin-Hee;Han, Sang-Seop;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.275-280
    • /
    • 2005
  • Carbon tetrachloride ($CCl_4$) is well known hepatotoxicant. Its overdose cause severe centrilobular hepatic necrosis in human and experimental animals. We administered $CCl_{4}$ at low (0.2 mL/kg p.o.) and high (2 mL/kg p.o.) doses to mice. Mice were sacrificed at 24 h after administration. We evaluated liver toxicity by serum AST and ALT level and by microscopic observation. Using cDNA chip, we conducted gene expression analysis in liver. Mean serum activities of the hepatocellular leakage enzymes, ALT and AST, were significantly increased compare to control, respectively, in the low and high dose groups. H&E evaluation of stained liver sections revealed $CCl_{4}-related$ histopathological findings in mice. Moderate centrilobular hepatocellular necrosis was present in all $CCl_{4}$ treated mice. We found that gene expression pattern was very similar between low and high dose group. However, some stress related genes were differently expressed. These results could be a molecular signature for the degree of liver injury. Our data suggest that the degree of severity could be figure out by gene expression profiling.

CACNA1A Gene Polymorphism is Associated with Hypertension in Korean Population

  • Kim, Hye-Kyung;Leem, Kang-Hyun;Lee, Se-Na;Hong, Mee-Sook;Jung, Kyung-Hee;Kim, Su-Kang;Kang, Sung-Wook;Chung, Joo-Ho
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.31-35
    • /
    • 2009
  • High blood pressure (BP) is the most frequent risk factor among metabolic syndrome components. The control of hypertension is very important to prevent the cardiovascular risk in metabolic syndrome. The dysfunction of calcium channel is responsible in the regulation of the vascular muscle contribution to hypertension. Calcium channel, voltage-dependent, P/Q type, alpha-1A subunit (CACNA1A) gene is located in brain and known to control the intracranial hypertension. In this study, we investigate whether the polymorphisms of CACNA1A gene is associated with hypertension. The 49 CACNA1A genotypes were determined using the Affymetrix Genotyping chip array in 92 hypertension and 279 control individuals from a Korean population. Logistic and multiple regression models were employed to analyze the genetic contributions of polymorphisms. Out of 49 polymorphisms, six SNPs (rs12611029, rs16035, rs7259944, rs10419472, rs17777900, and rs4926294) showed a significant association with hypertension in three alternative models (codominant, dominant, and recessive models; P<0.05 after adjusting for age and sex). Our results suggest that the CACNA1A gene may be associated with hypertension in the Korean population.

  • PDF

Different Gene Expression on Human Blood by Administration of OLT-2 (OLT-2의 복용에 의한 인간 혈중 유전자 발현 변화)

  • Cha, Min-Ho;Moon, Jin-Seok;Jeon, Byung-Hun;Yoon, Yong-Gab;Yoon, Yoo-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.853-860
    • /
    • 2006
  • This study was performed to investigate genes which are differently expressed in human blood by administrating of OLT-2. OLT-2 was medical precipitation composed of three medicinal herbs, Ginseng Radix, Astragali Radix, Glycyrrhizae Radix, and anti-leukemia effect of it was evaluated from Byung Hun Jeon of Wonkwang University this study was approved by Institutional Review Board of Korea Institute of Oriental Medicine (Taejeon, Korea) and four male subjects participated in this study. Gene expressions were evaluated by cDNA chip, in which 24,000 genes were spotted. Hierarchical cluster and biological process against the genes, which expression changes were more than 1.6 fold, were constructed by cluster 3.0 providing Stanford University and EASE(http://apps1 .maid.nih.gov/DAVID). Five groups were clustered according to their expression patterns. Group A contained gene decreased by OLT-2 and increased genes by OLT-2 were involved in Group B, C, D. In biological process, expression of genes involved in cytokine or cell calcium signaling, such as interleukin 18 and G-protein beta 4 were increased, but protein tyrosine phosphatase receptor type c, which function is cell adhesion between antigen-presenting cell and T or B-cell, was decreased by OLT-2. This study provides the most comprehensive available survey of gene expression changes in response to anti-leukemia effect of OLT-2 in human blood.

Genome-Wide Transcriptional Response During the Development of Bleomycin-Induced Pulmonary Fibrosis in Sprague-Dawley Rats

  • Park, Han-Jin;Yang, Mi-Jin;Oh, Jung-Hwa;Yang, Young-Su;Kwon, Myung-Sang;Song, Chang-Woo;Yoon, Seok-Joo
    • Toxicological Research
    • /
    • v.26 no.2
    • /
    • pp.137-147
    • /
    • 2010
  • Pulmonary fibrosis is a common consequence of many lung diseases and a leading cause of morbidity and mortality. The molecular mechanisms underlying the development of pulmonary fibrosis remain poorly understood. One model used successfully to study pulmonary fibrosis over the past few decades is the bleomycin-induced pulmonary fibrosis model. We aimed to identify the genes associated with fibrogenesis using an Affymetrix GeneChip system in a bleomycin-induced rat model for pulmonary fibrosis. To confirm fibrosis development, several analyses were performed, including cellular evaluations using bronchoalveolar lavage fluid, measurement of lactate dehydrogenase activity, and histopathological examinations. Common aspects of pulmonary fibrosis such as prolonged inflammation, immune cell infiltration, emergence of fibroblasts, and deposition of extracellular matrix and connective tissue elements were observed. Global gene expression analysis revealed significantly altered expression of genes ($\geq$ 1.5-fold, p < 0.05.) in a time-dependent manner during the development of pulmonary fibrosis. Our results are consistent with previous results of well-documented gene expression. Interestingly, the expression of triggering receptor expressed on myeloid cells 2 (Trem2), secreted phosphoprotein 1 (Spp1), and several proteases such as Tpsab1, Mcpt1, and Cma1 was considerably induced in the lung after bleomycin treatment, despite little evidence that they are involved in pulmonary fibrogenesis. These data will aid in our understanding of fibrogenic mechanisms and contribute to the identification of candidate biomarkers of fibrotic disease development.

DNA microarray analysis of RNAi plant regulated expression of NtROS2a gene encoding cytosine DNA demethylation (시토신 탈메틸화 관련 NtROS2a 유전자 발현을 제어한 RNAi 식물의 DNA microarray 분석)

  • Choi, Jang Sun;Lee, In Hye;Jung, Yu Jin;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.231-239
    • /
    • 2016
  • To study the transcript levels of epigenetically regulated genes in tobacco, we have developed a transgenic line OX1 overexpressing NtROS2a gene encoding cytosine DNA demethylation and a RNAi plant line RNAi13. It has been reported that salt- and $H_2O_2$-stress tolerance of these transgenic lines are enhanced with various phenotypic characters (Lee et al. 2015). In this paper, we conducted microarray analysis with Agilent Tobacco 4 x 44K oligo chip by using overexpression line OX1, RNAi plant line RNAi 13, and wild type plant WT. Differentially expressed genes (DEGs) related to metabolism, nutrient supply, and various stressed were up-regulated by approximately 1.5- to 80- fold. DEGs related to co-enzymes, metabolism, and methylation functional genes were down-regulated by approximately 0.03- to 0.7- fold. qRT-PCR analysis showed that the transcript levels of several candidate genes in OX1 and RNAi lines were significantly (p < 0.05) higher than those in WT, such as genes encoding KH domain-containing protein, MADS-box protein, and Zinc phosphodiesterase ELAC protein. On the other hand, several genes such as those encoding pentatricopeptide (PPR) repeat-containing protein, histone deacetylase HDAC3 protein, and protein kinase were decreased by approximately 0.4- to 1.0- fold. This study showed that NtROS2a gene encoding DNA glycosylase related to demethylation could regulate adaptive response of tobacco at transcriptional level.

Integrated RT-PCR Microdevice with an Immunochromatographic Strip for Colorimetric Influenza H1N1 virus detection

  • Heo, Hyun Young;Kim, Yong Tae;Chen, Yuchao;Choi, Jong Young;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.273-273
    • /
    • 2013
  • Recently, Point-of-care (POC) testing microdevices enable to do the patient monitoring, drug screening, pathogen detection in the outside of hospital. Immunochromatographic strip (ICS) is one of the diagnostic technologies which are widely applied to POC detection. Relatively low cost, simplicity to use, easy interpretations of the diagnostic results and high stability under any circumstances are representative advantages of POC diagnosis. It would provide colorimetric results more conveniently, if the genetic analysis microsystem incorporates the ICS as a detector part. In this work, we develop a reverse transcriptase-polymerase chain reaction (RT-PCR) microfluidic device integrated with a ROSGENE strip for colorimetric influenza H1N1 virus detection. The integrated RT-PCR- ROSGENE device is consist of four functional units which are a pneumatic micropump for sample loading, 2 ${\mu}L$ volume RT-PCR chamber for target gene amplification, a resistance temperature detector (RTD) electrode for temperature control, and a ROSGENE strip for target gene detection. The device was fabricated by combining four layers: First wafer is for RTD microfabrication, the second wafer is for PCR chamber at the bottom and micropump channel on the top, the third is the monolithic PDMS, and the fourth is the manifold for micropump operation. The RT-PCR was performed with subtype specific forward and reverse primers which were labeled with Texas-red, serving as a fluorescent hapten. A biotin-dUTP was used to insert biotin moieties in the PCR amplicons, during the RT-PCR. The RT-PCR amplicons were loaded in the sample application area, and they were conjugated with Au NP-labeled hapten-antibody. The test band embedded with streptavidins captures the biotin labeled amplicons and we can see violet colorimetric signals if the target gene was amplified with the control line. The off-chip RT-PCR amplicons of the influenza H1N1 virus were analyzed with a ROSGENE strip in comparison with an agarose gel electrophoresis. The intensities of test line was proportional to the template quantity and the detection sensitivity of the strip was better than that of the agarose gel. The test band of the ROSGENE strip could be observed with only 10 copies of a RNA template by the naked eyes. For the on-chip RT-PCR-ROSGENE experiments, a RT-PCR cocktail was injected into the chamber from the inlet reservoir to the waste outlet by the micro-pump actuation. After filling without bubbles inside the chamber, a RT-PCR thermal cycling was executed for 2 hours with all the microvalves closed to isolate the PCR chamber. After thermal cycling, the RT-PCR product was delivered to the attached ROSGENE strip through the outlet reservoir. After dropping 40 ${\mu}L$ of an eluant buffer at the end of the strip, the violet test line was detected as a H1N1 virus indicator, while the negative experiment only revealed a control line and while the positive experiment a control and a test line was appeared.

  • PDF

Effects of Cell Wall on the Transformation of Microalgae by a Digital Microfluidic System (디지털 미세유체를 이용한 미세녹조류 형질전환에서의 세포벽의 영향 분석)

  • Im, Do Jin
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.90-95
    • /
    • 2015
  • Digital microfluidic electroporation system was used for the transformation of microalgae and we have obtained higher transformation efficiency and viability than that of conventional method. Key parameters of electroporation such as pulse voltage, number, and duration time were systematically investigated for two different microalgal strains with and without cell wall. We have found that cell wall does not always have negative effects on the gene transformation of microalgae. Parallel processing of proposed digital microfluidic electroporation was demonstrated together with on chip culture of microalgae.

Improving data reliability on oligonucleotide microarray

  • Yoon, Yeo-In;Lee, Young-Hak;Park, Jin-Hyun
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.107-116
    • /
    • 2004
  • The advent of microarray technologies gives an opportunity to moni tor the expression of ten thousands of genes, simultaneously. Such microarray data can be deteriorated by experimental errors and image artifacts, which generate non-negligible outliers that are estimated by 15% of typical microarray data. Thus, it is an important issue to detect and correct the se faulty probes prior to high-level data analysis such as classification or clustering. In this paper, we propose a systematic procedure for the detection of faulty probes and its proper correction in Genechip array based on multivariate statistical approaches. Principal component analysis (PCA), one of the most widely used multivariate statistical approaches, has been applied to construct a statistical correlation model with 20 pairs of probes for each gene. And, the faulty probes are identified by inspecting the squared prediction error (SPE) of each probe from the PCA model. Then, the outlying probes are reconstructed by the iterative optimization approach minimizing SPE. We used the public data presented from the gene chip project of human fibroblast cell. Through the application study, the proposed approach showed good performance for probe correction without removing faulty probes, which may be desirable in the viewpoint of the maximum use of data information.

  • PDF