Browse > Article
http://dx.doi.org/10.5487/TR.2010.26.2.137

Genome-Wide Transcriptional Response During the Development of Bleomycin-Induced Pulmonary Fibrosis in Sprague-Dawley Rats  

Park, Han-Jin (Division of Research and Development, Korea Institute of Toxicology)
Yang, Mi-Jin (Division of Inhalation Toxicology, KIT Jeongeup Campus)
Oh, Jung-Hwa (Division of Research and Development, Korea Institute of Toxicology)
Yang, Young-Su (Division of Inhalation Toxicology, KIT Jeongeup Campus)
Kwon, Myung-Sang (Division of Research and Development, Korea Institute of Toxicology)
Song, Chang-Woo (Division of Inhalation Toxicology, KIT Jeongeup Campus)
Yoon, Seok-Joo (Division of Research and Development, Korea Institute of Toxicology)
Publication Information
Toxicological Research / v.26, no.2, 2010 , pp. 137-147 More about this Journal
Abstract
Pulmonary fibrosis is a common consequence of many lung diseases and a leading cause of morbidity and mortality. The molecular mechanisms underlying the development of pulmonary fibrosis remain poorly understood. One model used successfully to study pulmonary fibrosis over the past few decades is the bleomycin-induced pulmonary fibrosis model. We aimed to identify the genes associated with fibrogenesis using an Affymetrix GeneChip system in a bleomycin-induced rat model for pulmonary fibrosis. To confirm fibrosis development, several analyses were performed, including cellular evaluations using bronchoalveolar lavage fluid, measurement of lactate dehydrogenase activity, and histopathological examinations. Common aspects of pulmonary fibrosis such as prolonged inflammation, immune cell infiltration, emergence of fibroblasts, and deposition of extracellular matrix and connective tissue elements were observed. Global gene expression analysis revealed significantly altered expression of genes ($\geq$ 1.5-fold, p < 0.05.) in a time-dependent manner during the development of pulmonary fibrosis. Our results are consistent with previous results of well-documented gene expression. Interestingly, the expression of triggering receptor expressed on myeloid cells 2 (Trem2), secreted phosphoprotein 1 (Spp1), and several proteases such as Tpsab1, Mcpt1, and Cma1 was considerably induced in the lung after bleomycin treatment, despite little evidence that they are involved in pulmonary fibrogenesis. These data will aid in our understanding of fibrogenic mechanisms and contribute to the identification of candidate biomarkers of fibrotic disease development.
Keywords
Bleomycin; Gene expression; Lung fibrosis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhu, Z., Homer, R.J., Wang, Z., Chen, Q., Geba, G.P., Wang, J., Zhang, Y. and Elias, J.A. (1999). Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest., 103, 779-788.   DOI   ScienceOn
2 Zuo, F., Kaminski, N., Eugui, E., Allard, J., Yakhini, Z., Ben-Dor, A., Lollini, L., Morris, D., Kim, Y., DeLustro, B., Sheppard, D., Pardo, A., Selman, M. and Heller, R.A. (2002). Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc. Natl. Acad. Sci. USA,99, 6292-6297.   DOI   ScienceOn
3 Selman, M., Thannickal, V.J., Pardo, A., Zisman, D.A., Martinez, F.J. and Lynch, J.P., 3rd. (2004). Idiopathic pulmonary fibrosis: pathogenesis and therapeutic approaches. Drugs, 64, 405-430.   DOI
4 Sime, P.J., Xing, Z., Graham, F.L., Csaky, K.G. and Gauldie, J. (1997). Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J. Clin. Invest., 100, 768-776.   DOI   ScienceOn
5 Smith, R.E., Strieter, R.M., Zhang, K., Phan, S.H., Standiford, T.J., Lukacs, N.W. and Kunkel, S.L. (1995). A role for C-C chemokines in fibrotic lung disease. J. Leukoc. Biol., 57, 782-787.
6 Wynn, T.A., Cheever, A.W., Jankovic, D., Poindexter, R.W., Caspar, P., Lewis, F.A. and Sher, A. (1995). An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature, 376, 594-596.   DOI   ScienceOn
7 Tokuda, A., Itakura, M., Onai, N., Kimura, H., Kuriyama, T. and Matsushima, K. (2000). Pivotal role of CCR1-positive leukocytes in bleomycin-induced lung fibrosis in mice. J. Immunol., 164, 2745-2751.   DOI
8 van den Brule, S., Misson, P., Buhling, F., Lison, D. and Huaux, F. (2005). Overexpression of cathepsin K during silica-induced lung fibrosis and control by TGF-beta. Respir. Res., 6, 84.   DOI   ScienceOn
9 Wynn, T.A. (2004). Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat. Rev. Immunol., 4, 583-594.   DOI   ScienceOn
10 Zhang, H.Y., Gharaee-Kermani, M., Zhang, K., Karmiol, S. and Phan, S.H. (1996). Lung fibroblast alpha-smooth muscle actin expression and contractile phenotype in bleomycin-induced pulmonary fibrosis. Am. J. Pathol., 148, 527-37.
11 Zhang, K., Gharaee-Kermani, M., Jones, M.L., Warren, J.S. and Phan, S.H. (1994). Lung monocyte chemoattractant protein-1 gene expression in bleomycin-induced pulmonary fibrosis. J. Immunol., 153, 4733-4741.
12 Oh, J.H., Yang, M.J., Yang, Y.S., Park, H.J., Heo, S.H., Lee, E.H., Song, C.W. and Yoon, S. (2009). Microarray-based analysis of the lung recovery process after stainless-steel welding fume exposure in Sprague-Dawley rats. Inhal. Toxicol., 21, 347-373.   DOI
13 Perbal, B. (2004). CCN proteins: multifunctional signalling regulators. Lancet, 363, 62-64.   DOI   ScienceOn
14 Piguet, P.F., Collart, M.A., Grau, G.E., Sappino, A.P. and Vassalli, P. (1990). Requirement of tumour necrosis factor for development of silica-induced pulmonary fibrosis. Nature, 344, 245-247.   DOI   ScienceOn
15 Sakanashi, Y., Takeya, M., Yoshimura, T., Feng, L., Morioka, T. and Takahashi, K. (1994). Kinetics of macrophage subpopulations and expression of monocyte chemoattractant protein-1 (MCP-1) in bleomycin-induced lung injury of rats studied by a novel monoclonal antibody against rat MCP-1. J. Leukoc. Biol., 56, 741-750.
16 Pottier, N., Chupin, C., Defamie, V., Cardinaud, B., Sutherland, R., Rios, G., Gauthier, F., Wolters, P.J., Berthiaume, Y., Barbry, P. and Mari, B. (2007). Relationships between early inflammatory response to bleomycin and sensitivity to lung fibrosis: a role for dipeptidyl-peptidase I and tissue inhibitor of metalloproteinase-3? Am. J. Respir. Crit. Care. Med., 176, 1098-1107.   DOI   ScienceOn
17 Prasse, A., Stahl, M., Schulz, G., Kayser, G., Wang, L., Ask, K., Yalcintepe, J., Kirschbaum, A., Bargagli, E., Zissel, G., Kolb, M., Muller-Quernheim, J., Weiss, J.M. and Renkl, A.C. 2009. Essential role of osteopontin in smoking-related interstitial lung diseases. Am. J. Pathol., 174, 1683-1691.   DOI   ScienceOn
18 Roberts, A.B., Russo, A., Felici, A. and Flanders, K.C. (2003). Smad3: a key player in pathogenetic mechanisms dependent on TGF-beta. Ann. N. Y. Acad. Sci., 995, 1-10.   DOI   ScienceOn
19 Sandler, N.G., Mentink-Kane, M.M., Cheever, A.W. and Wynn, T.A. (2003). Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J. Immunol., 171, 3655-3667.   DOI
20 Lloyd, C.M., Minto, A.W., Dorf, M.E., Proudfoot, A., Wells, T.N., Salant, D.J. and Gutierrez-Ramos, J.C. (1997). RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J. Exp. Med., 185, 1371-1380.   DOI
21 Ma, B., Zhu, Z., Homer, R.J., Gerard, C., Strieter, R. and Elias, J.A. (2004). The C10/CCL6 chemokine and CCR1 play critical roles in the pathogenesis of IL-13-induced inflammation and remodeling. J. Immunol., 172, 1872-1881.   DOI
22 Munger, J.S., Huang, X., Kawakatsu, H., Griffiths, M.J., Dalton, S.L., Wu, J., Pittet, J.F., Kaminski, N., Garat, C., Matthay, M.A., Rifkin, D.B. and Sheppard, D. (1999). The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell, 96, 319-328.   DOI   ScienceOn
23 Matsui, Y., Jia, N., Okamoto, H., Kon, S., Onozuka, H., Akino, M., Liu, L., Morimoto, J., Rittling, S.R., Denhardt, D., Kitabatake, A. and Uede, T. (2004). Role of osteopontin in cardiac fibrosis and remodeling in angiotensin II-induced cardiac hypertrophy. Hypertension, 43, 1195-1201.   DOI   ScienceOn
24 Moeller, A., Ask, K., Warburton, D., Gauldie, J. and Kolb, M. (2008). The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell Biol., 40, 362-382.   DOI   ScienceOn
25 Moore, B.B., Paine, R., 3rd, Christensen, P.J., Moore, T.A., Sitterding, S., Ngan, R., Wilke, C.A., Kuziel, W.A. and Toews, G.B. (2001). Protection from pulmonary fibrosis in the absence of CCR2 signaling. J. Immunol., 167, 4368-4377.
26 Murray, L.A., Argentieri, R.L., Farrell, F.X., Bracht, M., Sheng, H., Whitaker, B., Beck, H., Tsui, P., Cochlin, K., Evanoff, H.L., Hogaboam, C.M. and Das, A.M. (2008). Hyper-responsiveness of IPF/UIP fibroblasts: interplay between TGFbeta1, IL-13 and CCL2. Int. J. Biochem. Cell. Biol., 40, 2174-2182.   DOI   ScienceOn
27 Gorelik, L. and Flavell, R.A. (2002). Transforming growth factorbeta in T-cell biology. Nat. Rev. Immunol., 2, 46-53.   DOI   ScienceOn
28 Hoffmann, K.F., McCarty, T.C., Segal, D.H., Chiaramonte, M., Hesse, M., Davis, E.M., Cheever, A.W., Meltzer, P.S., Morse, H.C., 3rd and Wynn, T.A. (2001). Disease fingerprinting with cDNA microarrays reveals distinct gene expression profiles in lethal type 1 and type 2 cytokine-mediated inflammatory reactions. Faseb. J., 15, 2545-2547.
29 Jordana, M., Dolovich, M., Irving, L.B., Tomioka, M., Befus, D., Gauldie, J. and Newhouse, M.T. (1988). Solute movement across the alveolar-capillary membrane after intratracheally administered bleomycin in rats. Am. Rev. Respir. Dis., 138, 96-100.   DOI   ScienceOn
30 Jakubzick, C., Choi, E.S., Carpenter, K.J., Kunkel, S.L., Evanoff, H., Martinez, F.J., Flaherty, K.R., Toews, G.B., Colby, T.V., Travis, W.D., Joshi, B.H., Puri, R.K., and Hogaboam, C.M. (2004). Human pulmonary fibroblasts exhibit altered interleukin-4 and interleukin-13 receptor subunit expression in idiopathic interstitial pneumonia. Am. J. Pathol., 164, 1989-2001.   DOI   ScienceOn
31 Kaminski, N., Allard, J.D., Pittet, J.F., Zuo, F., Griffiths, M.J., Morris, D., Huang, X., Sheppard, D. and Heller, R.A. (2000). Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation andfibrosis. Proc. Natl. Acad. Sci. USA, 97, 1778-1783.   DOI
32 Kang, H.R., Cho, S.J., Lee, C.G., Homer, R.J. and Elias, J.A. (2007). Transforming growth factor (TGF)-beta1 stimulates pulmonary fibrosis and inflammation via a Bax-dependent, bidactivated pathway that involves matrix metalloproteinase-12. J. Biol. Chem., 282, 7723-7732.
33 Katsuma, S., Nishi, K., Tanigawara, K., Ikawa, H., Shiojima, S., Takagaki, K., Kaminishi, Y., Suzuki, Y., Hirasawa, A., Yano J., Murakami, Y. and Tsujimoto G. (2001). Molecular monitoring of bleomycin-induced pulmonary fibrosis by cDNA microarray-based gene expression profiling. Biochem. Biophys. Res.Commun., 288, 747-751.   DOI   ScienceOn
34 Kuwano, K., Hagimoto, N. and Hara, N. (2001). Molecular mechanisms of pulmonary fibrosis and current treatment. Curr. Mol. Med., 1,551-573.   DOI
35 Ashcroft, T., Simpson, J.M. and Timbrell, V. (1988). Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J. Clin. Pathol., 41, 467-470.   DOI
36 Fertin, C., Nicolas, J.F., Gillery, P., Kalis, B., Banchereau, J. and Maquart, F.X. (1991). Interleukin-4 stimulates collagen synthesis by normal and scleroderma fibroblasts in dermal equivalents. Cell. Mol. Biol., 37, 823-829.
37 Belperio, J.A., Keane, M.P., Burdick, M.D., Lynch, J.P., 3rd, Xue, Y.Y., Berlin, A., Ross, D.J., Kunkel, S.L., Charo, I.F. and Strieter, R.M. (2001). Critical role for the chemokine MCP-1/CCR2 in the pathogenesis of bronchiolitis obliterans syndrome. J. Clin. Invest., 108, 547-556.   DOI
38 Cortijo, J., Cerda-Nicolas, M., Serrano, A., Bioque, G., Estrela, J.M., Santangelo, F., Esteras, A., Llombart-Bosch, A. and Morcillo, E.J. (2001). Attenuation by oral N-acetylcysteine of bleomycin-induced lung injury in rats. Eur. Respir. J., 17, 1228-1235.   DOI   ScienceOn
39 Doucet, C., Brouty-Boye, D., Pottin-Clemenceau, C., Canonica, G.W., Jasmin, C. and Azzarone, B. (1998). Interleukin (IL) 4 and IL-13 act on human lung fibroblasts. Implication in asthma. J. Clin. Invest., 101, 2129-2139.   DOI   ScienceOn
40 Fichtner-Feigl, S., Strober, W., Kawakami, K., Puri, R.K. and Kitani, A. (2006). IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat. Med., 12, 99-106.   DOI   ScienceOn
41 Gharaee-Kermani, M., Hu, B., Phan, S.H. and Gyetko, M.R. (2008). The role of urokinase in idiopathic pulmonary fibrosis and implication for therapy. Expert. Opin. Investig. Drugs, 17, 905-916.   DOI   ScienceOn
42 Gharaee-Kermani, M. and Phan, S.H. (2005). Molecular mechanisms of and possible treatment strategies for idiopathic pulmonary fibrosis. Curr. Pharm. Des., 11, 3943-3971.   DOI
43 Gharaee-Kermani, M., Ullenbruch, M. and Phan, S.H. (2005). Animal models of pulmonary fibrosis. Methods Mol. Med., 117, 251-259.