• 제목/요약/키워드: gene$

검색결과 22,940건 처리시간 0.045초

Biodistribution and Hemolysis Study of Terplex Gene Delivery System in Mice

  • Oh, Eun-Jung;Shim, Jin-young;Kim, Jin-Seok
    • Macromolecular Research
    • /
    • 제11권1호
    • /
    • pp.19-24
    • /
    • 2003
  • Polymeric gene delivery system attracts profound attention as it shows less toxicity, versatility, and reasonable gene expression efficiency. Terplex system, a synthetic biopolymeric gene delivery system consisting of stearyl poly-L-lysine (stearyl-PLL) and low density lipoprotein (LDL) was evaluated for its body distribution of gene expression of exogenously administered pDNA after tail-vein injection in mice. Kidney and spleen are two major organs with highest gene expression, whereas liver and heart showed marginal gene expression among the organs examined. Hemolytic effect of the terplex system was evaluated using human red blood cells, where terplex system did not cause significant hemolysis at the concentrations above the experimental ranges, although unmodified PLL or stearyl-PLL without LDL did. Serum stability of terplex system against enzymatic degradation was also significantly enhanced, presumably due to the steric stabilization from the polymers. Based on these findings and along with its high in vitro transfection efficiency, terplex system could serve as a safe and efficient polymeric gene delivery system with many applications for the in vivo gene therapy.

핵의학적 기법을 이용한 유전자 치료 영상법 (Monitoring Gene Therapy by Radionuclide Approaches)

  • 민정준
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제40권2호
    • /
    • pp.96-105
    • /
    • 2006
  • Molecular imaging has its root in nuclear medicine and gene therapy monitoring. Therefore, recent progress in the development of non-invasive imaging technologies, particularly nuclear medicine, should allow molecular imaging to play a major role in the field of gene therapy. These tools have recently been validated in gene therapy models for continuous quantitative monitoring of the location, magnitude, and time-variation of gene delivery and/or expression. This article reviews the use of radionuclide imaging technologies as they have been used in imaging gene delivery and gene expression for gene therapy applications. The studios published to date lend support that noninvasive imaging tools will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human gene therapy.

EFMDR-Fast: An Application of Empirical Fuzzy Multifactor Dimensionality Reduction for Fast Execution

  • Leem, Sangseob;Park, Taesung
    • Genomics & Informatics
    • /
    • 제16권4호
    • /
    • pp.37.1-37.3
    • /
    • 2018
  • Gene-gene interaction is a key factor for explaining missing heritability. Many methods have been proposed to identify gene-gene interactions. Multifactor dimensionality reduction (MDR) is a well-known method for the detection of gene-gene interactions by reduction from genotypes of single-nucleotide polymorphism combinations to a binary variable with a value of high risk or low risk. This method has been widely expanded to own a specific objective. Among those expansions, fuzzy-MDR uses the fuzzy set theory for the membership of high risk or low risk and increases the detection rates of gene-gene interactions. Fuzzy-MDR is expanded by a maximum likelihood estimator as a new membership function in empirical fuzzy MDR (EFMDR). However, EFMDR is relatively slow, because it is implemented by R script language. Therefore, in this study, we implemented EFMDR using RCPP ($c^{{+}{+}}$ package) for faster executions. Our implementation for faster EFMDR, called EMMDR-Fast, is about 800 times faster than EFMDR written by R script only.

유전자 교정 기술의 생의학적 응용 (Biomedical Application of Gene Editing)

  • 박주찬;장현기
    • 산업기술연구
    • /
    • 제42권1호
    • /
    • pp.29-36
    • /
    • 2022
  • The CRISPR system has revolutionized gene editing field. Cas9-mediated gene editing such as Indel induction or HDR enable targeted gene disruption or precise correction of mutation. Moreover, CRISPR-based new editing tools have been developed such as base editors. In this review, we focus on gene editing in human pluripotent stem cells, which is principal technique for gene correction therapy and disease modeling. Pluripotent stem cell-specific drug YM155 enabled selection of target gene-edited pluripotent stem cells. Also, we discussed base editing for treatment of congenital retina disease. Adenine base editor delivery as RNP form provide an approach for genetic disease treatment with safe and precise in vivo gene correction.

Ensemble Gene Selection Method Based on Multiple Tree Models

  • Mingzhu Lou
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.652-662
    • /
    • 2023
  • Identifying highly discriminating genes is a critical step in tumor recognition tasks based on microarray gene expression profile data and machine learning. Gene selection based on tree models has been the subject of several studies. However, these methods are based on a single-tree model, often not robust to ultra-highdimensional microarray datasets, resulting in the loss of useful information and unsatisfactory classification accuracy. Motivated by the limitations of single-tree-based gene selection, in this study, ensemble gene selection methods based on multiple-tree models were studied to improve the classification performance of tumor identification. Specifically, we selected the three most representative tree models: ID3, random forest, and gradient boosting decision tree. Each tree model selects top-n genes from the microarray dataset based on its intrinsic mechanism. Subsequently, three ensemble gene selection methods were investigated, namely multipletree model intersection, multiple-tree module union, and multiple-tree module cross-union, were investigated. Experimental results on five benchmark public microarray gene expression datasets proved that the multiple tree module union is significantly superior to gene selection based on a single tree model and other competitive gene selection methods in classification accuracy.

Genomic Structure of the Cu/Zn Superoxide Dismutase(SOD1) Gene from the Entomopathogenic Fungus, Cordyceps pruinosa

  • Park, Nam Sook;Jin, Byung Rae;Lee, Sang Mong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제39권2호
    • /
    • pp.67-73
    • /
    • 2019
  • The genomic structure of the Cu/Zn superoxide dismutase (SOD1) gene from the entomopathogenic fungus, Cordyceps pruinosa was characterized. The SOD1 gene of C. pruinosa spans 947 nucleotides and consisted of four exons encoding for 154 amino acids and three introns. Four exons of the SOD1 gene are composed of 13, 331, 97 and 20 nucleotides respectively. Homology search of amino acid sequences of the SOD1 gene of C. pruinosa with another 13 fungi species showed higher sequence similarity of 69% ~ 95% and had the most highest sequence identity of 95% with Beauveria bassiana and Cordyceps militaris, which can easely infect domesticated Bombyx mori and another wild lepidopteran species in artificial or natual manner of infection. This SOD1 gene sequence showed copper, zinc and beta-barrel fold sites. Homology search showed that the Cu/Zn SOD1 gene from the entomopathogenic fungus, C. pruinosa is an orthologous gene homolog present in different species of organism whose ancestor predates the split between the relating species. In addition, C. pruinosa SOD1 gene is placed together within the ascomycetes group of fungal clade. From these results it is concluded that C. pruinosa SOD1 gene is orthologous gene having the same or very similar functions with a common evolutionary ancestor.

유전자 수송계의 현재까지의 연구동향 및 앞으로의 개발전략 (Recent Advances and Future Strategy in Gene Delivery System)

  • 최우정;김종국
    • Journal of Pharmaceutical Investigation
    • /
    • 제30권1호
    • /
    • pp.1-12
    • /
    • 2000
  • Gene therapy is a method for the treatment of diseases with introducing the gene-engineered materials into a patient with gene-deficiency disease (e.g. cystic fibrosis) or cancer to produce a therapeutic protein in a patient's cells. Successful gene therapy requires establishing both gene expression systems and delivery systems. Viral and non-viral vectors have been used for gene delivery. Viral vectors have a high transfection efficiency, but are limited in relations to issues of safety, toxicity and immunogenecity. Non-viral vectors are easy to prepare and relatively safe. However, non-viral vectors have a low transfection efficiency. Cationic liposomes are the most available among non-viral vectors. Cationic liposomes have been used to transfect cells both in vitro and in vivo experiments. Besides, several formulations containing cationic lipid are being used in clinical trials in cases of cystic fibrosis or cancer. A crucial subject to the further development of gene delivery vectors will be a long-term gene expression with following characteristics; protecting and deliverying DNA efficiently, non-toxic and non-immunogenic, and easy to produce in large scale.

  • PDF

Gene-Diet Interaction on Cancer Risk in Epidemiological Studies

  • Lee, Sang-Ah
    • Journal of Preventive Medicine and Public Health
    • /
    • 제42권6호
    • /
    • pp.360-370
    • /
    • 2009
  • Genetic factors clearly play a role in carcinogenesis, but migrant studies provide unequivocal evidence that environmental factors are critical in defining cancer risk. Therefore, one may expect that the lower availability of substrate for biochemical reactions leads to more genetic changes in enzyme function; for example, most studies have indicated the variant MTHFR genotype 677TT is related to biomarkers, such as homocysteine concentrations or global DNA methylation particularly in a low folate diet. The modification of a phenotype related to a genotype, particularly by dietary habits, could support the notion that some of inconsistencies in findings from molecular epidemiologic studies could be due to differences in the populations studied and unaccounted underlying characteristics mediating the relationship between genetic polymorphisms and the actual phenotypes. Given the evidence that diet can modify cancer risk, gene-diet interactions in cancer etiology would be anticipated. However, much of the evidence in this area comes from observational epidemiology, which limits the causal inference. Thus, the investigation of these interactions is essential to gain a full understanding of the impact of genetic variation on health outcomes. This report reviews current approaches to gene-diet interactions in epidemiological studies. Characteristics of gene and dietary factors are divided into four categories: one carbon metabolism-related gene polymorphisms and dietary factors including folate, vitamin B group and methionines; oxidative stress-related gene polymorphisms and antioxidant nutrients including vegetable and fruit intake; carcinogen-metabolizing gene polymorphisms and meat intake including heterocyclic amins and polycyclic aromatic hydrocarbon; and other gene-diet interactive effect on cancer.

Validation of Gene Silencing Using RNA Interference in Buffalo Granulosa Cells

  • Monga, Rachna;Datta, Tirtha Kumar;Singh, Dheer
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권11호
    • /
    • pp.1529-1540
    • /
    • 2011
  • Silencing of a specific gene using RNAi (RNA interference) is a valuable tool for functional analysis of a target gene. However, information on RNAi for analysis of gene function in farm animals is relatively nil. In the present study, we have validated the interfering effects of siRNA (small interfering RNA) using both quantitative and qualitative gene silencing in buffalo granulosa cells. Qualitative gene knockdown was validated using a fluorescent vector, enhanced green fluorescence protein (EGFP) and fluorescently labeled siRNA (Cy3) duplex. While quantitatively, siRNA targeted against the luciferase and CYP19 mRNA was used to validate the technique. CYP19 gene, a candidate fertility gene, was selected as a model to demonstrate the technique optimization. However, to sustain the expression of CYP19 gene in culture conditions using serum is difficult because granulosa cells have the tendency to luteinize in presence of serum. Therefore, serum free culture conditions were optimized for transfection and were found to be more suitable for the maintenance of CYP19 gene transcripts in comparison to culture conditions with serum. Decline in fluorescence intensity of green fluorescent protein (EGFP) was observed following co-transfection with plasmid generating siRNA targeted against EGFP gene. Quantitative decrease in luminescence was seen when co-transfected with siRNA against the luciferase gene. A significant suppressive effect on the mRNA levels of CYP19 gene at 100 nM siRNA concentration was observed. Also, measurement of estradiol levels using ELISA (enzyme-linked immunosorbent assay) showed a significant decline in comparison to control. In conclusion, the present study validated gene silencing using RNAi in cultured buffalo granulosa cells which can be used as an effective tool for functional analysis of target genes.

Effect of the pat, fk, stpk Gene Knock-out and mdh Gene Knock-in on Mannitol Production in Leuconostoc mesenteroides

  • Peng, Yu-Wei;Jin, Hong-Xing
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.2009-2018
    • /
    • 2018
  • Leuconostoc mesenteroides can be used to produce mannitol by fermentation, but the mannitol productivity is not high. Therefore, in this study we modified the chromosome of Leuconostoc mesenteroides by genetic methods to obtain high-yield strains for mannitol production. In this study, gene knock-out strains and gene knock-in strains were constructed by a two-step homologous recombination method. The mannitol productivity of the pat gene (which encodes phosphate acetyltransferase) deletion strain (${\Delta}pat::amy$), the fk gene (which encodes fructokinase) deletion strain (${\Delta}fk::amy$) and the stpk gene (which encodes serine-threonine protein kinase) deletion strain (${\Delta}stpk::amy$) were all increased compared to the wild type, and the productivity of mannitol for each strain was 84.8%, 83.5% and 84.1%, respectively. The mannitol productivity of the mdh gene (which encodes mannitol dehydrogenase) knock-in strains (${\Delta}pat::mdh$, ${\Delta}fk::mdh$ and ${\Delta}stpk::mdh$) was increased to a higher level than that of the single-gene deletion strains, and the productivity of mannitol for each was 96.5%, 88% and 93.2%, respectively. The multi-mutant strain ${\Delta}dts{\Delta}ldh{\Delta}pat::mdh{\Delta}stpk::mdh{\Delta}fk::mdh$ had mannitol productivity of 97.3%. This work shows that multi-gene knock-out and gene knock-in strains have the greatest impact on mannitol production, with mannitol productivity of 97.3% and an increase of 24.7% over wild type. This study used the methods of gene knock-out and gene knock-in to genetically modify the chromosome of Leuconostoc mesenteroides. It is of great significance that we increased the ability of Leuconostoc mesenteroides to produce mannitol and revealed its broad development prospects.