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Gene-gene interaction is a key factor for explaining missing heritability. Many methods have been proposed to identify 
gene-gene interactions. Multifactor dimensionality reduction (MDR) is a well-known method for the detection of gene-gene 
interactions by reduction from genotypes of single-nucleotide polymorphism combinations to a binary variable with a value 
of high risk or low risk. This method has been widely expanded to own a specific objective. Among those expansions, 
fuzzy-MDR uses the fuzzy set theory for the membership of high risk or low risk and increases the detection rates of 
gene-gene interactions. Fuzzy-MDR is expanded by a maximum likelihood estimator as a new membership function in 
empirical fuzzy MDR (EFMDR). However, EFMDR is relatively slow, because it is implemented by R script language. Therefore, 
in this study, we implemented EFMDR using RCPP (c＋＋ package) for faster executions. Our implementation for faster 
EFMDR, called EMMDR-Fast, is about 800 times faster than EFMDR written by R script only.
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Availability: EFMDR-Fast is written in R and RCPP and is available at http://statgen.snu.ac.kr/software/efmdr.

Introduction

In genome-wide association studies, many associations 
between single-nucleotide polymorphisms (SNPs) and 
phenotypes have been successfully discovered in many 
studies [1]. Despite the success of association studies, a 
large part of heritability remains unexplained as missing 
heritability [2]. Gene-gene interactions, rare variants, and 
structural variations are pointed to as causes of missing 
heritability.

For the detection of gene-gene interactions, the multifactor 
dimensionality reduction (MDR) method has been proposed 
by the reduction from genotype values of an SNP com-
bination to a binary variable having a value of “high risk” or 
“low risk” [3]. This method has been widely expanded for 
specific objectives, such as balanced accuracy for imbalanced 
data [4], generalized MDR for covariate adjustments and 
continuous phenotypes [5] for survival phenotypes [6, 7], 

and odds ratio-based MDR [8], etc. [9-14]. 
Among MDR expansions, fuzzy-MDR uses the fuzzy set 

theory for an adaptation of membership function for reflecting 
the uncertainty of “high risk” or “low risk,” and detection 
rate increases have been verified in many simulations [15]. 
Fuzzy-MDR has been expanded for covariate adjustments 
and continuous phenotypes [16] and maximum likelihood 
estimator as the membership function as empirical fuzzy 
MDR (EFMDR) [17].

In EFMDR, a maximum likelihood estimator for each 
genotype is a membership value of ‘high risk’ or ‘low risk’ for 
the genotype. It has been proven that values of fuzzy 
balanced accuracy, based on maximum likelihood estimations, 
follow a chi-square distribution. Therefore, there is no need 
for cross-validation of p-value calculations. However, EFMDR 
is relatively slow, because it is implemented by R script only. 
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Fig. 1. Example of the visualization of
the results of EFMDR-Fast. EFMDR, 
empirical fuzzy multifactor dimen-
sionality reduction.

Methods and Results

To detect k-order interactions, MDR compares the 
balanced accuracy of all possible k-SNP combinations [3] 
and performs cross-validations. In fuzzy-MDR [15], fuzzy 
membership functions are used for reflecting the uncertainty 
of “high risk” or “low risk,” and validation of this uncertainty 
has been confirmed in various simulation experiments. In 
EFMDR [17], the maximum likelihood estimator of 
probabilities of “case” or “control” is used as the relative 
membership degree of “high risk” and “low risk,”. In 
addition, it is proven that the fuzzy balanced accuracy of 
EFMDR follows a chi-square distribution and that the 
cross-validation scheme is omitted by this property [17]. 
Because of the omission of cross-validation and the simple 
membership function, EFMDR is faster than fuzzy-MDR, 
but it is still slow in detecting high-order interactions.

For fast execution of EFMDR written in R, such 
optimization methods as using vector calculations might be 
a good approach. Instead, we used the RCPP package [18] for 
the implementation of faster EFMDR. In EFMDR, for 

detecting the k-locus interaction of a p-SNP dataset, 
SNP combinations are tested for the detection of an SNP 
combination with the highest fuzzy balanced accuracy. For 
example, for the detection of two-locus interactions in a 
1000-SNP dataset, 1000*999/2=499,500 combinations are 
tested. This procedure—comparing fuzzy balanced accuracy 
values of all possible k-SNP combinations—dominates 
almost the total execution time. Therefore, we implemented 
a function for comparisons of balanced accuracy values of all 
possible k-SNP combinations using RCPP package 
(EFMDR-Fast). 

The results of the execution of EFMDR and EFMDR-Fast 
are in exactly the same formats. Hence, the results of 
EFMDR-Fast can be visualized easily using functions in 
EFMDR, as shown in Fig. 1.

We confirmed that the best SNP combinations of EFMDR 
and EFMDR-Fast are exactly the same. EFMDR-Fast is about 
800 times faster than EFMDR. These comparisons were 
performed in R, version 3.5.1 on the Windows 10 platform 
with a 3.20 GHz CPU and 16 GB RAM. The program source 
codes and examples of EFMDR-Fast, written in R, and RCPP 
are available at http://statgen.snu.ac.kr/software/efmdr.
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