• Title/Summary/Keyword: gear efficiency

Search Result 354, Processing Time 0.022 seconds

Transmission Error Analysis of the Helical Gears for the Elevator (엘리베이터용 헬리컬기어의 전달오차 해석)

  • Park, Chan-Il;Kim, Dae-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2695-2702
    • /
    • 2002
  • The elevator gear box with the helical gears needs to be developed instead of the one with the worm gears to improve the efficiency. In order to develop the gear box, the analytical tool to predict the helical gear noise is necessary to meet customer's noise requirement. Gear noise is related to the loaded transmission error. Therefore, the simulation program fer the loaded transmission error analysis of the helical gears is developed in this study. Using the developed program, the effects of tooth modification such as tip relief and the extent of tip relief are investigated. Finally, the procedures to determine the tip relief and the extent of tip relief are proposed.

Multi-objective Optimal Desing of Internal Gear with Small Tooth Difference (잇수차가 적은 내접치차의 다목적 최적 설계)

  • 최영석;김성근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.808-812
    • /
    • 1996
  • Reduction gear with internal gear pair need functions such as compact size, high reduction ratios, high transmission efficiency, and low noise. Feasible design region of the internal gear pair with a small tooth difference is extremely limited because the internal gear pair is subject to interference in meshing and cutting. Single-objective optimal design can not simulataneously satisfy the manifold requirements of the internal gear pair and can not determine the economical specification of a pinion cutter. Multi-objective optimal design which include the specification of the pinion cutter in design variables is developed, considering the manufacturing error of an internalgear pair and the re-sharpening of the pinion cutter.

  • PDF

Analyses of Influence of Frictional Heat on the Contact Stress of High-speed Micro-gears

  • Kim, Cheol;Kim, Hyeong-Seok
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.244-248
    • /
    • 2015
  • When a small gear rotates at a very high speed over 40,000 rpm, frictional heat is generated on the gear surfaces. Thermal deformations and stresses arising from frictional heat may lower the efficiency and fatigue life of the high-speed gear. Especially, such frictional heat has much stronger effects on the performance of millimeter-sized high-speed gears used for surgical and dental hand-pieces, due to a small surface area. An analytical equation was derived to calculate frictional temperature on a mating gear surface and conduction heat transfer analysis was performed. Thermal deformation and contact stresses were then calculated using FEM for gears used for medical hand-pieces. The contact stresses of the meshed gear and pinion increase by 19.4% and 16.4%, respectively, when the frictional thermal deformations are considered.

The speed reducer of torque meter type with damping (Damping을 갖는 토크미터형 감속기)

  • Song, Chang-Hun;Lee, Woo-Min;Oh, Se-Hoon;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.471-475
    • /
    • 2001
  • Planetary Speed Reducer consists of a sun gear, a planetary gear and a ring gear and if one element is fixed at this Speed Reducer, another elements operate to become a drive-axis and a subordination-axis respectively. Planetary Speed Reducer is frequently used for gear Speed Reducer because it has the advantage of having the high efficiency and getting the high Speed Reducer ratio in small space. However, it is difficult to know the current transmitted torque immediately during the use of Speed Reducer and so complicated equipment is installed in addition to protect the overload of system. The object of this paper is to design the Speed Reducer of torque- meter type that can know the torque transmitted using the power transmission feature of a simple Planetary Speed Reducer fixed at ring gear.

  • PDF

Dynamic Load Analysis of Aircraft Landing Gear (항공기 착륙장치 동하중 해석)

  • Shin, Jeong-Woo;Kim, Tae-Uk;Hwang, In-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Role of landing gear is to absorb energy which is generated by aircraft ground maneuvering and landing. Generally, in order to absorb the impact energy, oleo-pneumatic type shock absorber is used in aircraft landing gear. Oleo-pneumatic type shock absorber has a good energy absorption efficiency and is light in weight because structure of oleo-pneumatic type shock strut is relatively simple. In this study, dynamic load analysis for swinging arm type landing gear was performed to predict landing loads. Modeling of landing gear was conducted with MSC.ADAMS, and dynamic landing loads were analyzed based on ADS-29. Optimum landing loads were generated through adjustment of damping orifice and the analysis results were presented with various aircraft attitude.

  • PDF

Design and Fabrication of Scaffold Type Energy Harvester Using Multiplying Gear Module (증속기어 모듈을 이용한 발판형 에너지 하베스터의 설계 및 제작)

  • Min, Chul Hong;Kim, Tae Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.857-862
    • /
    • 2014
  • In this paper, we designed and fabricated electromagnetic induction based scaffold type energy harvester. For energy harvesting, mechanical energy of vertical motion is transferred to rotational energy using rack gear and multiplying gear was used to maximize energy transfer. To optimize design parameters, physical structure of energy harvester was modeled using finite element method. The effect of multiplying gear ratio and frequency levels of applied mechanical energy on energy generation efficiency are analyzed by computer simulation and experimental test. Experimental results showed that maximum 25.36 W of electric power can be achieved at the frequency of 2 Hz and 1:77 of gear ratio with only 5 mm of vertical changes on scaffold structure.

Design Modification of Marine Turning Gear Based on Spur Planetary Gear (스퍼 유성감속기 기반 선박용 터닝기어의 설계 변경)

  • Kim, Kun-Woo;Lee, Jae-Wook;Jang, Jin-Seok;Oh, Joo-Young;Hong, Jong-Hae;Lee, Kang-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.7-14
    • /
    • 2019
  • A marine turning gear controls the position of the piston-crank mechanism by rotating the flywheel of the marine engine at a low speed, which is the main auxiliary machine that enables the disassembly and maintenance of the engine. In this study, the safety factor for surface durability and tooth bending strength was improved by the design modification of the marine turning gear based on the spur planetary gear. Angular velocity, torque, and efficiency of the turning gear were measured using a reliability evaluation tester, and a multibody dynamics model for analysis corresponding to the test results was developed. Finally, it was confirmed that the design improvements improved the tooth surface damage of the sun gear in the 3rd reduction stage.

Development of Marine Turning Gear Based on Helical Planetary Reducer (헬리컬 유성감속기 기반 선박용 터닝기어 개발)

  • Kim, Kun-Woo;Lee, Jae-Wook;Jang, Jin-Seok;Choi, Chang-Young;Hong, Jong-Hae;Lee, Kang-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.36-43
    • /
    • 2020
  • A marine turning gear is the main auxiliary machine that enables the disassembly of and maintenance on the main engines. In this study, a marine turning gear based on a helical planetary reducer was developed through analysis of a marine turning gear based on a spur planetary reducer. Nonlinear numerical analysis was performed to determine the ideal contact ratio between the sun gear and the idle gear. Based on this, the surface durability, tooth bending strength, and contact ratio were calculated. In addition, the helix direction was selected to utilize the existing bearings. Gears were manufactured based on the helical gear design values, and the turning gear was evaluated using the FTA standards of MAN Co. Ltd. As a result, a lifetime of 3,000 to 5,000 hours was verified, the maximum torque measured was 105kNm, and the efficiency was measured to be 87.4%.

Transmission Efficiency of Dual-clutch Transmission in Agricultural Tractors (농업용 트랙터 듀얼 클러치 변속기의 동력전달 효율 분석에 관한 연구)

  • Moon, Seok Pyo;Moon, Sang Gon;Kim, Jae Seung;Sohn, Jong Hyeon;Kim, Yong Joo;Kim, Su Chul
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.43-50
    • /
    • 2022
  • The aim of this study was to conduct basic research on the development of a dual-clutch transmission(DCT) and automatic transmission for agricultural tractors. The DCT layout and the DCT simulation model were developed using commercial software. Power transmission efficiency of the DCT and component power loss were analyzed to verify the developed simulation model. Power loss analysis of the components was conducted according to previous studies and ISO(International Organization for Standardization) standards. The power transmission efficiency of the DCT simulation model was 68.4-91.5% according to the gear range. The power loss in the gear, bearing, and clutch DCT system components was 0.75-1.49 kW, 0.77-2.99 kW, and 5.24-10.52 kW, respectively. The developed simulation model not include the rear axle, differential gear, final reduction gear. Therefore actual power transmission efficiency of DCT will be decreased. In a future study, an actual DCT can be developed through the simulation model in this study, and optimization design of DCT can be possible by comparing simulation results and actual vehicle test.

PERFORMANCE NEEDS OF TOMORROW'S DRIVELINE LUBRICANTS

  • Hong, Hyun-Soo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.21-24
    • /
    • 2002
  • There is a trend with driveline lubricants toward improved thermal stability, vehicle component durability and fuel efficiency. These improvements can significantly reduce vehicle operating costs and improve customer satisfaction. Of these improvements, the fuel efficiency is getting a substantial attention due to recent focus on $CO_2$ emission control in Europe, Japan and $CAF{\'{E}}$ requirement in U.S.A. Lower viscosity axle oils and transmission fluids are currently being evaluated as potential solutions since these lubricants tend to reduce the churning losses and can improve the fuel efficiency. However, these lubricants should provide adequate gear and bearing protection, while increasing the overall efficiency of the driveline components. In this paper, the development of new fuel efficient axle was discussed with the focus on the effect of base oils, additives, and viscosity modifiers on the fuel efficiency of driveline components.

  • PDF