• 제목/요약/키워드: gear bending stress

검색결과 75건 처리시간 0.025초

Modal and Stress Analysis of Spur Gear in DC Motor Gearhead using Finite Element Model

  • Pratama, Pandu Sandi;Supeno, Destiani;Jeong, Seongwon;Park, Cunsook;Woo, Jihee;Lee, Eunsook;Yoon, Woojin;Choi, Wonsik
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.17-17
    • /
    • 2017
  • In electric agricultural machine the gearhead is needed to convert the high speed low torque rotation motion generated by DC motor to lower speed high torque motion used by the vehicle. The gearhead consist of several spur gears works as reduction gears. Spur gear have straight tooth and are parallel to the axis of the wheel. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modeling and simulation of spur gears in DC motor gearhead is important to predict the actual motion behavior. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress including bending fatigue. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of gearhead is simulated using ansys work bench software based on finite element method (FEM). The modal analysis was done to understand gearhead deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on gearhead to simulate the gear teeth bending stress and contact stress behavior. This methodology serves as an approach for gearhead design evaluation, and the study of gear stress behavior in DC motor gearhead which is needed in the small workshop scale industries.

  • PDF

사출 성형 플라스틱 단붙이 기어의 강도평가 (Strength Estimation of Injection Molded Plastic Stepped Spur Gear)

  • 정태형;문창기;하영욱
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.17-23
    • /
    • 2006
  • The strength estimation is carried out for injection molded plastic stepped gear. The stepped gear is considered as a plate model which is fixed by two edges and freed on the other sides. The stress of common normal gear is calculated by Lewis formula which can be derived quite simply from the equation fur the stress at the root of a cantilever beam. Stress ratio(step factor) between the common normal gear and stepped gear is proposed for the ratio of the bending stress of normal gear and that of stepped gear. This study proposes the step factor added in Dupont equation which is used for strength estimation of injection molded plastic stepped gear.

침탄치차의 굽힘강도에 미치는 Shot Peening의 효과에 관한 연구 (A Study on the Effect of Shot Peened Treatments on the Strength of Carburized Gears)

  • 류성기;전형주;문봉호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.959-963
    • /
    • 1996
  • Hardened layer and compressive residual stress created by carburized treatment effect on bending fatigue strength of gear massively. Also, shot peening treatment improves the strength of carburized gear as it does the hardness and residual stress of surface layer. In these days shot peening techniques are welcomed as one of physical improvement ways around the surface of materials. It is used widely because qualitative analysis of shot peening has become possible and surface treatment can be done with very little costs compared to other surface improvement methods. Therefore this study investigates the effect of shot peening in surface shape and bending fatigue strength after doing many kinds of shot peening treatments, then doing fatigue test and also explained characteristics of shot peening gear.

  • PDF

Prediction of Gear Bending Fatigue Life of Electro-mechanical Actuator for Aircraft Through Finite Element Analysis

  • Kim, Taehyung;Seok, Taehyeon;Kwon, Soon-hyeong;Lee, Byung-ho;Kwon, Byung-gi;Kwon, Jun-yong;Cheong, Seong-kyun
    • 항공우주시스템공학회지
    • /
    • 제14권6호
    • /
    • pp.58-67
    • /
    • 2020
  • In this study, finite element fatigue analysis combined with a fatigue correlation factor is proposed to predict the bending fatigue life of a gear in an electro-mechanical aircraft actuator. First, stress-life curves are obtained for the gear material via a round bar fatigue test. Subsequently, stochastic stress-life (P-S-N) curves are derived for 50% and 1% failure probabilities, separately. The curves are applied to the fatigue analysis model of a single gear tooth, and the effect of the fatigue correction factor is analyzed. The analytical P-S-N curves reflecting the fatigue correction factor matched the experimental data. This shows that the analytical fatigue life is reliable and that the analysis technique is effective.

Development of the Sub Gear for the Scissors Gear System for Automobile Engines

  • Nakazawa, Katsuhito;Nagata, Toshihiko;Motooka, Naoki
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.756-757
    • /
    • 2006
  • P/M enables the economical production of components for many kinds of gears. Functionally, the sub gear requires high tooth accuracy and bending fatigue strength. The whole tooth profile was sized after sintering to satisfy the gear tooth accuracy specification. The part was redesigned to reduce machining requirements. The required bending fatigue strength was achieved through appropriate material choice and induction of compressive residual stress by shotpeening after carburizing. The P/M sub gear replaced a forged steel gear, satisfied performance requirements, expanded the use of P/M applications and provided over 30% cost reduction.

  • PDF

자동차 헬리컬기어의 하중전달 특성해석 (Analysis of Load Transmission Characteristics for Automobile Helical Gear)

  • 박찬일;이장무
    • 한국자동차공학회논문집
    • /
    • 제3권5호
    • /
    • pp.1-9
    • /
    • 1995
  • The purpose of this study is to develop a computer simulation program for analyzing load transmission characteristics of a helical gear system in design stage. In this analysis, the rotational delay, load distribution, root stress, and contact area are investigated. That is, the influence function of deflection is obtained by finite element analysis and the influence function of approach and gear tooth error are considered. Load distribution, rotational delay, and contact area are calculated by solving load-deflection equation which includes these influence functions and tooth error, and the influence function of the bending moment is obtained by finite element analysis. The root stress is calculated by the load distribution and the influence function of the bending moment. The results of the simulation are cross-checked through a specially designed experimental set-up.

  • PDF

Load capacity simulation of an agricultural gear reducer by surface heat treatment

  • Lee, Pa-Ul;Chung, Sun-Ok;Choi, Chang-Hyun;Joo, Jai-Hwang;Rhee, Joong-Yong;Choi, Young-Soo;Ha, Jong-Woo;Park, Young-Jun;Hong, Sun-Jung;Kim, Yong-Joo
    • 농업과학연구
    • /
    • 제43권4호
    • /
    • pp.656-664
    • /
    • 2016
  • Gear reducers are widely used for various agricultural machinery applications such as greenhouses, tractors, and agricultural vehicles. However, thermal deformation and surface pitting at gear tooth flank frequently occur in gear reducers due to high torque. Thus, surface heat treatment of gears is required to improve wear and fatigue resistance. The objective of this study was to simulate the load capacity of the agricultural gear reducer. The simulation was performed for the following three surface heat treatment methods: untreated gears, nitriding heat treatment, and induction hardening method, those mostly used for agricultural gear reducers. The load capacity of the gear reducer was simulated using the safety factor, limit bending stress, and limit contact stress of the gear. The simulation of the load capacity was conducted using KISSsoft commercial software for gear analysis. The main results of simulation test were as follows: first, the nitriding heat treatment resulted in the highest safety factor for bending stress, which was increased about 77% from those of the untreated gears. Second, the induction hardening was the highest safety factor for contact stress, which was increased about 150% from those of the untreated gears. The safety factor for contact stress of the induction hardening was increased about 64% from those of the nitriding heat treatment. The study result suggested that the surface heat treatments could enhance load capacity and that the method of surface heat treatment should be determined based on simulation results for appropriate use scenarios.

풍력발전용 피치 드라이브 시스템의 복합 유성기어류에 대한 피로 강도해석 (Fatigue Strength Analysis of Complex Planetary Gear Train of the Pitch Drive System for Wind Turbines)

  • 김광민;배명호;조연상
    • Tribology and Lubricants
    • /
    • 제37권2호
    • /
    • pp.48-53
    • /
    • 2021
  • Wind energy is considered as the most competitive energy source in terms of power generation cost and efficiency. The power train of the pitch drive for a wind turbine uses a 3-stage complex planetary gear system in being developed locally. A gear train of the pitch drive consists of an electric or hydraulic motor and a planetary decelerator, which optimizes the pitch angle of the blade for wind generators in response to the change in wind speed. However, it is prone to many problems, such as excessive repair costs in case of failure. Complex planetary gears are very important parts of a pitch drive system because of strength problem. When gears are designed for the power train of a pitch drive, it is necessary to analyze the fatigue strength of gears. While calculating the specifications of the complex planetary gears along with the bending and compressive stresses of the gears, it is necessary to analyze the fatigue strength of gears to obtain an optimal design of the complex planetary gears in terms of cost and reliability. In this study, the specifications of planetary gears are calculated using a self-developed gear design program. The actual gear bending and compressive stresses of the planetary gear system were analyzed using the Lewes and Hertz equation. Additionally, the calculated specifications of the complex planetary gears were verified by evaluating the results from the Stress - No. of cycles curves of gears.

박육직교축 치차의 설계에 관한 기초적 연구 (Study on the Design of Thin Intersected Axe Gear)

  • 장지연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권3호
    • /
    • pp.80-87
    • /
    • 1993
  • The various configuration of thin-shaped bevel gears are used usually for such as main reduction gear of the hovercraft. But the reasonable and concise guide to thedesign of the se bevel gears is not yet obtained, since the tooth of bevel gear has complex form. The purpose of these investigation is to be establish the design guide and to propose the desirable configuration form for thin-shaped straight bevel gear. In this report, the desirable configuration is examined experimentally by clearing up the effect of web and rim thickness, rim support condition upon the load distribution and root stress distribution along the tooth trace. The results are summarized as follows. (1) The crowning of tooth trace exerts a significant effect on the root stress distribution of thin-shaped bevel gear. (2) As the desirable configuration of the thin-shaped bevel gear, it is to be recommended that the rim is supported at the heel side of tooth trace. (3) But, as special type, it is desirable that the rim is supported at the toe side.

  • PDF

2속 변속 감속기의 구조 안전성 분석과 위험속도 해석 (Structural Safety and Critical Speed Analysis of 2-Speed Shift Reducer)

  • 강진경;유영락;박규태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.1-9
    • /
    • 2022
  • The structure and operating principle of the 2-speed shift reducer were explained, the allowable bending stress value of the material was compared with the analysis result through FM structural analysis program, and the average stress distribution value of von Mises was performed on the gear root atmosphere. The structural safety of the 2-speed planetary gear reducer was verified through FM structural analysis. The natural frequency was calculated by applying the specifications of the planetary gears of the 2-speed gearbox, and the critical speed of resonance was calculated by calculating the natural frequency and the transmission error of the engaged gear pair. As a result of analyzing the critical speed, since it is formed higher than the actual operating speed range, it is considered safe because there is no resonance problem due to the suggested specifications of the planetary gears of the 2-speed shift reduction.