• 제목/요약/키워드: gaussian mixture model

검색결과 419건 처리시간 0.037초

오디오 신호에 기반한 음란 동영상 판별 (Classification of Phornographic Videos Based on the Audio Information)

  • 김봉완;최대림;이용주
    • 대한음성학회지:말소리
    • /
    • 제63호
    • /
    • pp.139-151
    • /
    • 2007
  • As the Internet becomes prevalent in our lives, harmful contents, such as phornographic videos, have been increasing on the Internet, which has become a very serious problem. To prevent such an event, there are many filtering systems mainly based on the keyword-or image-based methods. The main purpose of this paper is to devise a system that classifies pornographic videos based on the audio information. We use the mel-cepstrum modulation energy (MCME) which is a modulation energy calculated on the time trajectory of the mel-frequency cepstral coefficients (MFCC) as well as the MFCC as the feature vector. For the classifier, we use the well-known Gaussian mixture model (GMM). The experimental results showed that the proposed system effectively classified 98.3% of pornographic data and 99.8% of non-pornographic data. We expect the proposed method can be applied to the more accurate classification system which uses both video and audio information.

  • PDF

지능형 서비스 로봇 환경에서의 화자 인식 연구 (Speaker Recognition in the Intelligent Service Robot)

  • 반규대;곽근창;정연구
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.393-394
    • /
    • 2007
  • Speaker Recognition for the Intelligent Service Robot is implemented in this paper. For this purpose, we perform speaker recognition based on Gaussian Mixture Model(GMM) and use robot platform called WEVER, which is a Ubiquitous Robotic Companion(URC) intelligent service robot developed at Intelligent Robot Research Division in ETRI. The experimental results reveals that the approach presented in this paper yields a good identification (89.00%) performance within 2 meter distance.

  • PDF

Statistical Extraction of Speech Features Using Independent Component Analysis and Its Application to Speaker Identification

  • 장길진;오영환
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.156-156
    • /
    • 2002
  • We apply independent component analysis (ICA) for extracting an optimal basis to the problem of finding efficient features for representing speech signals of a given speaker The speech segments are assumed to be generated by a linear combination of the basis functions, thus the distribution of speech segments of a speaker is modeled by adapting the basis functions so that each source component is statistically independent. The learned basis functions are oriented and localized in both space and frequency, bearing a resemblance to Gabor wavelets. These features are speaker dependent characteristics and to assess their efficiency we performed speaker identification experiments and compared our results with the conventional Fourier-basis. Our results show that the proposed method is more efficient than the conventional Fourier-based features in that they can obtain a higher speaker identification rate.

내장형 음성 인식 시스템을 위한 심층 신경망 최적화 방법 (Deep Neural Network Optimization for Embedded Speech Recognition)

  • 정훈;최우용;박전규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.231-233
    • /
    • 2015
  • 본 논문에서는 심층 신경망 기반의 내장형 음성 인식 시스템에서 음성 인식 속도를 개선하기 위한 최적화 방법에 대해 논한다. 심층 신경망 기반의 음성 인식은 기존의 Gaussian Mixture Model (GMM) 기반에 비해 좋은 인식 성능을 보이지만 높은 연산량으로 인해 리소스가 제약된 내장형 단말기에 적용하기에는 어려움이 따른다. 따라서, 본 연구에서는 심층 신경망의 계산량 문제를 해결하고자 ARM 코어에 내장된 병렬 명령어를 사용한 최적화 기법과 특이값 분해를 통해 심층 신경망 매트릭스 연산량 감소 방안에 대해 제안한다.

  • PDF

클래스 히스토그램 등화 기법에 의한 강인한 음성 인식 (Robust Speech Recognition by Utilizing Class Histogram Equalization)

  • 서영주;김회린;이윤근
    • 대한음성학회지:말소리
    • /
    • 제60호
    • /
    • pp.145-164
    • /
    • 2006
  • This paper proposes class histogram equalization (CHEQ) to compensate noisy acoustic features for robust speech recognition. CHEQ aims to compensate for the acoustic mismatch between training and test speech recognition environments as well as to reduce the limitations of the conventional histogram equalization (HEQ). In contrast to HEQ, CHEQ adopts multiple class-specific distribution functions for training and test environments and equalizes the features by using their class-specific training and test distributions. According to the class-information extraction methods, CHEQ is further classified into two forms such as hard-CHEQ based on vector quantization and soft-CHEQ using the Gaussian mixture model. Experiments on the Aurora 2 database confirmed the effectiveness of CHEQ by producing a relative word error reduction of 61.17% over the baseline met-cepstral features and that of 19.62% over the conventional HEQ.

  • PDF

실시간 영상에서 모션 벡터 차이를 이용한 정면얼굴 이미지 탐지 (Front face image detection using difference of motion vector on Real Video)

  • 김동현;정주신;김현정;원일용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.461-463
    • /
    • 2012
  • 본 연구는 실시간 영상에서 정면 얼굴을 가지고 있는 이미지를 탐지하는 방법에 대한 것이다. 모든 프레임마다 얼굴 인식 등의 연산을 수행한다면 계산량과 시간이 문제이다. 우리가 제안하는 방법은 동일인이 등장하는 영상 중 동일한 얼굴을 추적하여 움직임의 차이를 이용하여 정면 이미지를 판단하는 것이다. Gaussian Mixture Model 과 Motion template 을 이용하였으며, 실험을 통해 도출된 결과는 제안 알고리즘의 유용성을 어느 정도 증명할 수 있었다.

다중 심도 카메라를 이용한 실시간 피플 카운팅 시스템 (Real-time People Counting System Using Multiple Depth Cameras)

  • 이용섭;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.652-654
    • /
    • 2012
  • 본 논문에서는 다중 심도 카메라 기반의 실시간 피플 카운팅 시스템을 제안 한다. 카메라 영상으로부터 사람을 감지하고 추적하는 시스템 및 그 방법에 관한 것으로, 피플 카운팅 시스템은 쇼핑몰이나 대형건물의 출입구 등과 같은 다양한 환경에 적용될 수 있다. 기존 피플 카운팅 시스템에서의 급격한 조명의 변화나 겹침 현상, 가림 현상에 대한 해결 방법으로, 다중 심도 카메라 환경에서 동일 객체 추적을 위해 RLM(Range Laser Method)를 적용하고, 조명 등 환경 변화에 강인한 배경 제거 및 물체 검출 기법으로 가우시안 혼합 모델(Gaussian Mixture Model)을 적용해 객체인식에 대한 정확도를 높인다. 또한, 객체를 블랍(Blob)으로 지정해 확장 칼만 필터(Extended Kalman Filter, EKF) 방법으로 객체를 추적한다. 본 제안은 피플 카운팅 시스템에의 객체 검출 및 인식에 대한 정확도를 향상시킬 수 있으리라 기대된다.

해상환경에서 MITL 시스템을 활용한 VTG 기반 기동표적 추적성능 개선 기법 (VTG based Moving Target Tracking Performance Improvement Method using MITL System in a Maritime Environment)

  • 백인혜;우상효
    • 한국멀티미디어학회논문지
    • /
    • 제22권3호
    • /
    • pp.357-365
    • /
    • 2019
  • In this paper, we suggest the tracking method of moving multi-objects in maritime environments. The image acquisition is conducted using IR(InfraRed) camera sensors on an airborne platform. Under the circumstance of maritime, the qualities of IR images can be significantly degraded due to the clutter influence, which directly gives rise to a tracking loss problem. In order to reduce the effects from the clutters, we introduce a technical approach under Man-In-The-Loop(MITL) system for enhancing the tracking performance. To demonstrate the robustness of the proposed approach based on VTG(Valid Tracking Gate), the simulations are conducted utilizing the airborne IR video sequences: Then, the tracking performances are compared with the existing Kalman Filter tracking techniques.

가우시안 혼합 모델과 옵티컬 플로우 기법을 이용한 특이행동 인지 기법 연구 (Abnormal behavior detection using Gaussian Mixture Model and Optical Flow)

  • 박종현;임성조;강동중
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.173-176
    • /
    • 2009
  • 본 논문에서는 감시시스템이 갖추어진 환경 내에서 발생할 수 있는 특이 행동을 효율적으로 감지하기 위한 기법을 제시한다. 최근 대형 범죄 및 방화 사건 등의 방지목적으로 DVR 의 단순 녹화를 벗어나 지능형 감시시스템을 도입하려는 연구가 활발히 진행되고 있다. 그러나 이러한 시스템들은 아직 초기 연구 단계에 있으며 영상내의 관심물체 추출을 위한 전경과 배경의 분리 및 추적 단계에 그치고 있다. 이에 본 논문에서는 가우시안 혼합 모델을 통하여 전경과 배경을 분리하고, 관심영역에 한해서 Optical Flow 기법을 이용하여 폭력상황과 같은 특이 행동의 감지 여부를 판단 할 수 있는 방법에 대해 실험을 통해 평가하였다.

공정 모니터링 기술의 최근 연구 동향 (Recent Research Trends of Process Monitoring Technology: State-of-the Art)

  • 유창규;최상욱;이인범
    • Korean Chemical Engineering Research
    • /
    • 제46권2호
    • /
    • pp.233-247
    • /
    • 2008
  • 공정 모니터링 기술은 공정 내에서 일어나는 예상치 못한 조업변화 및 이상을 조기에 감지하고 조업 이상에 영향을 끼친 근본 원인을 밝혀내어 제거해 줌으로써 공정의 안정적인 조업과 양질의 제품생산의 기반을 제공하여 준다. 데이터에 기반한 통계적 공정 모니터링 방법은 양질의 공정 데이터만 주어진다면 통계적 처리를 접목하여 비교적 쉽게 모니터링을 할 수 있고 공정의 데이터 분석에 이용할 수 있는 도구를 얻을 수 있다는 장점이 있다. 그러나 실제 공정에서는 비선형성, non-Gaussianity, 다중 운전모드, 공정상태변화로 인해 기존의 다변량 통계적 방법을 이용한 공정 모니터링 기법은 비효율적이거나, 공정 감시 성능의 저하, 종종 신뢰할 수 없는 결과를 야기한다. 이러한 경우 기존의 방법으로는 더이상 공정을 정확히 감시할 수 없기 때문에 최근에 많은 새로운 방법들이 개발 되었다. 본 총설에서는 이러한 단점을 보안하기 위해 최근 주목할 만한 연구결과인 공정 비선형성을 고려한 커널주성분분석(kernel principle component analysis) 모니터링 기법, 주성분분석 모델 조합을 이용한 다중모델(mixture model) 모니터링 기법, 공정 변화를 고려한 적응모델(adaptive model) 모니터링 기법, 그리고 센서 이상진단과 보정의 이론과 응용결과에 대하여 소개한다.