• Title/Summary/Keyword: gastrointestinal microorganism

Search Result 13, Processing Time 0.019 seconds

The Role of Probiotics in Infants and Children with Food Allergy (Probiotics와 영아와 소아의 식품 알레르기)

  • Park, Kie Young
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.11 no.sup1
    • /
    • pp.127-135
    • /
    • 2008
  • According to the hygiene hypothesis, westernized and urbanized life style leads to the increase of allergic disease. This hypothesis supports the use of probiotic therapy for the prevention or treatment of food allergy. The probiotics which contains potentially beneficial microorganism have been used for the treatment of some gastrointestinal disorders and atopic disease as dietary supplements. Many results of studies support the immunologic bases of probiotics therapy. The most important mechanism is that probiotics suppress Th2-skewed immunity as the stimulation of regulatory T cell. The difficulties of diagnosis of food allergy, variable symptoms, many kinds of microorganism, diet style and non-standardized study designs are attributed to the variety and controversy of the effectiveness of probiotics in food allergy with infant and children. More studies is needed to confirm the efficacy of probiotics in infant and children with food allergy.

  • PDF

Co-cultured methanogen improved the metabolism in the hydrogenosome of anaerobic fungus as revealed by gas chromatography-mass spectrometry analysis

  • Li, Yuqi;Sun, Meizhou;Li, Yuanfei;Cheng, Yanfen;Zhu, Weiyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1948-1956
    • /
    • 2020
  • Objective: The purpose of this study was to reveal the metabolic shift in the fungus cocultured with the methanogen (Methanobrevibacter thaueri). Methods: Gas chromatography-mass spectrometry was used to investigate the metabolites in anaerobic fungal (Pecoramyces sp. F1) cells and the supernatant. Results: A total of 104 and 102 metabolites were detected in the fungal cells and the supernatant, respectively. The partial least squares-discriminant analysis showed that the metabolite profiles in both the fungal cell and the supernatant were distinctly shifted when co-cultured with methanogen. Statistically, 16 and 30 metabolites were significantly (p<0.05) affected in the fungal cell and the supernatant, respectively by the co-cultured methanogen. Metabolic pathway analysis showed that co-culturing with methanogen reduced the production of lactate from pyruvate in the cytosol and increased metabolism in the hydrogenosomes of the anaerobic fungus. Citrate was accumulated in the cytosol of the fungus co-cultured with the methanogen. Conclusion: The co-culture of the anaerobic fungus and the methanogen is a good model for studying the microbial interaction between H2-producing and H2-utilizing microorganisms. However, metabolism in hydrogenosome needs to be further studied to gain better insight in the hydrogen transfer among microorganisms.

A report of 12 unrecorded prokaryotic species isolated from gastrointestinal tracts and feces of various endangered animals in Korea

  • Kim, Pil Soo;Lee, Ki-Eun;Tak, Euon Jung;Kang, Myung-Suk;Bae, Jin-Woo
    • Journal of Species Research
    • /
    • v.9 no.1
    • /
    • pp.35-45
    • /
    • 2020
  • In 2016 and 2017, as part of a comprehensive investigation to identify the prokaryotic species in Korea, a total of 12 bacterial strains were isolated from the gastrointestinal tract and/or fecal samples of four endangered species, including reptile, bird, and marine and terrestrial mammals. Phylogenetic analysis with the 16S rRNA gene sequence was used to assign these strains to the phyla, Firmicutes, Actinobacteria or Proteobacteria. Furthermore, most of the strains Firmicutes belonged to the order Lactobacillales. Interestingly, 12 of the isolated strains have not been previously reported from the Korean Peninsula. Also, based on their high 16S rRNA gene sequence similarities(>98.7%) and formation of strong monophyletic clades with the closest type species, each isolated strain of isolates was assigned to an independent, predefined bacterial species. Gram-stain reaction, colony and cell morphology, biochemical characteristics, isolation source, and NIBR IDs are described in the species description section.

Pathophysiology of enteropathogenic Escherichia coli during a host infection

  • Lee, Jun Bong;Kim, Se Kye;Yoon, Jang Won
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.28.1-28.18
    • /
    • 2022
  • Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea in developing countries. However, sporadic outbreaks caused by this microorganism in developed countries are frequently reported recently. As an important zoonotic pathogen, EPEC is being monitored annually in several countries. Hallmark of EPEC infection is formation of attaching and effacing (A/E) lesions on the small intestine. To establish A/E lesions during a gastrointestinal tract (GIT) infeciton, EPEC must thrive in diverse GIT environments. A variety of stress responses by EPEC have been reported. These responses play significant roles in helping E. coli pass through GIT environments and establishing E. coli infection. Stringent response is one of those responses. It is mediated by guanosine tetraphosphate. Interestingly, previous studies have demonstrated that stringent response is a universal virulence regulatory mechanism present in many bacterial pathogens including EPEC. However, biological signficance of a bacterial stringent response in both EPEC and its interaction with the host during a GIT infection is unclear. It needs to be elucidated to broaden our insight to EPEC pathogenesis. In this review, diverse responses, including stringent response, of EPEC during a GIT infection are discussed to provide a new insight into EPEC pathophysiology in the GIT.

Current status and prospect of novel food materials developed by using biotechnology (바이오기술을 이용한 식품소재 개발의 국내·외 현황 및 전망)

  • Yoo, Sang-Ho
    • Food Science and Industry
    • /
    • v.52 no.2
    • /
    • pp.171-187
    • /
    • 2019
  • Novel food materials can be produced based on biotechnology such as genetic recombination, microbial fermentation, and enzymatic engineering by utilizing living organisms such as animal, plant, and microorganism or by applying the enzymes isolated from them. Especially, exploration and development of novel prebiotics and probiotics attracted great attention worldwide in the food industry, of which the research and industrial trends in food biotechnology field are promoting the production of next generation sweeteners and proliferation of beneficial bacteria in gastrointestinal tract. Development and commercialization of novel food materials by domestic bioprocessing technology have been sluggish due to the GMO/LMO food safety issues. Meanwhile, the US and EU do not perceive badly about gene manipulation technology, and the research is most active in the fields of crops and GMMs, respectively. Genetic scissors, which are considered as next generation technology, are notable since foreign genes do not remain in final products.

Studies on the Function of Lactic Acid Bacteria and Related Yeasts in Probiotics: A Review (프로바이오틱스 중 유산균 및 관련 효모의 기능에 관한 연구 고찰)

  • Yoon, Jin A;Shin, Kyung-Ok
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.3
    • /
    • pp.395-404
    • /
    • 2017
  • Probiotics may be defined as microbial agents that can benefit humans and have been used primarily by mankind in fermented foods. A representative of probiotics is lactic acid bacteria (LAB), which has received attention recently due to its perceived health benefits. We reviewed research papers about Bifidobacerium and Lactobacillus, which are two of the most known of the LAB. Bifidobacerium alleviates diarrhea from various causes by improving intestinal microflora, and it has been reported that it reduces Helicobacter pylori bacteria known as the cause of gastric ulcer and stomach cancer. Bifidobacerium has also reported to be effective on immunization and allergy, reduce blood cholesterol, cancer, lactose intolerance. Lactobacillus alleviates diarrhea but has not fully demonstrated its effectiveness relative to other health issues. Several lactic acid bacteria and yeast are expected to act as probiotics, so, in the future, more research on the health benefits of lactic acid bacteria is needed.

Effect of Lactic Acid Bacteria Powder on Loperamide-induced Constipation in Rat (Loperamide로 유도된 변비 증상에 유산균 제제가 미치는 영향)

  • Kim, Eun Young;Jo, Kyungae;Ahn, So Hyun;Park, Sung Sun;Son, Heung Soo;Han, Sung Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.6
    • /
    • pp.956-964
    • /
    • 2015
  • Probiotics is known improve the microenvironment of colon; however, the metagenomic DNA study of its lactic acid bacteria in constipation induced by loperamide is not clearly understood. In the present study, we investigated the reduction of the lactic acid bacteria in case of constipation, in normal and loperamide-induced rat. Lactic acid powder (lactic acid bacteria 19) was prepared from Chong Kun Dang Pharmaceutical Corporation. After 2 weeks of oral administration, the group treated with the higher concentration of lactic acid bacteria ($10^9CFU/mL$ per kg of body weight) following loperamide treatment was the most effective in increasing number, weight, and water content of feces. A similar but significant increase was found in the group treated with lower concentration of lactic acid bacteria ($10^7CFU/mL$ per kg of body weight) after loperamide treatment. The concentrations of acetic acid and propionic acid in feces in the loperamide-induced rat with high concentration lactic acid, were significantly higher than that of others. Furthermore, gastrointestinal transit ratio as well as the length and area of intestinal mucosa were significantly increased after treatment with lactic acid bacteria in loperamide-induced rat. Metagenomics DNA analysis indicated that the microorganism homology in cecum was similar between the groups of normal (NOR) and HIG. Our results show that lactic acid bacteria were effective in improving the constipation.

Influence of Supplemental Enzymes, Yeast Culture and Effective Micro-organism Culture on Gut Micro-flora and Nutrient Digestion at Different Parts of the Rabbit Digestive Tract

  • Samarasinghe, K.;Shanmuganathan, T.;Silva, K.F.S.T.;Wenk, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.830-835
    • /
    • 2004
  • An experiment of 10 weeks duration was carried out to study the influence of supplemental effective microorganism (EM) culture, yeast culture and enzymes on nutrient digestibility and gut microflora in rabbit gastrointestinal (GI) tract. Twenty four eight to nine weeks old, New Zealand White rabbits were allotted to four dietary treatments; a basal (control) feed, basal feed supplemented with either EM (1%), yeast culture or enzymes (400 ppm). Nutrient flow in digesta and their digestibility at ileum, caecum, colon and in the total tract as well as gut microflora distribution were studied. Feed dry matter was diluted from 92% to about 14% up to the ileum and about 95% of this water was reabsorbed by the colonic rectal segment followed by caecum (25%). EM and yeast improved protein digestibility at a lower rate than enzymes. Ileal, caecal, colonic and total tract digestibility of crude protein with enzymes were higher by 10.8, 9.4, 11.3 and 10.7%, respectively, as compared to the control. Yeast and enzymes increased crude fiber digestibility at ileum, caecum, colon and in the total tract by 8.5, 9.6, 9.0 and 8.3%, respectively, while EM improved them at a lower rate. Irrespective of treatments, total tract digestibility of crude protein (0.698-0.773) and fiber (0.169-0.183) were greater (p<0.05) than the ileal digestibility. Even though a post-caecal protein digestibility was observed, fiber digestion seemed to be completed in the caecum especially with yeast and enzymes. High precaecal digestibility of crude fiber (97%) and protein (95%) were observed even without additives probably due to caecotrophy. EM and yeast culture promoted the growth of lactic acid bacteria especially in the caecum but they did not influence gut yeast and mould. Present findings reveal that even though rabbits digest nutrients efficiently through hind gut fermentation, they can be further enhanced by EM, yeast and enzymes. Of the three additives tested, enzymes found to be the best.

Prebiotic Potential of Xylooligosaccharides Derived from Corn Cobs and Their In Vitro Antioxidant Activity When Combined with Lactobacillus

  • Yu, Xiuhua;Yin, Jianyuan;Li, Lin;Luan, Chang;Zhang, Jian;Zhao, Chunfang;Li, Shengyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1084-1092
    • /
    • 2015
  • In the present work, the in vitro prebiotic activity of xylooligosaccharides (XOS) derived from corn cobs combined with Lactobacillus plantarum, a probiotic microorganism, was determined. These probiotics exhibited different growth characteristics depending on strain specificity. L. plantarum S2 cells were denser and their growth rates were higher when cultured on XOS. Acetate was found to be the major short-chain fatty acid produced as the end-product of fermentation, and its amount varied from 1.50 to 1.78 mg/ml. The antimicrobial activity of XOS combined with L. plantarum S2 was determined against gastrointestinal pathogens. The results showed that XOS proved to be an effective substrate, enhancing antimicrobial activity for L. plantarum S2. In vivo evaluation of the influence of XOS and L. plantarum S2, used both alone and together, on the intestinal microbiota in a mouse model showed that XOS combined with L. plantarum S2 could increase the viable lactobacilli and bifidobacteria in mice feces and decrease the viable Enterococcus, Enterobacter, and Clostridia spp. Furthermore, in the in vitro antioxidant assay, XOS combined with L. plantarum S2 possessed significant 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis, and superoxide anion radical-scavenging activities, and the combinations showed better antioxidant activity than either XOS or L. plantarum S2 alone.

Complete genome sequencing and comparative genomic analysis of Lactobacillus acidophilus C5 as a potential canine probiotics

  • Son, Seungwoo;Lee, Raham;Park, Seung-Moon;Lee, Sung Ho;Lee, Hak-Kyo;Kim, Yangseon;Shin, Donghyun
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1411-1422
    • /
    • 2021
  • Lactobacillus acidophilus is a gram-positive, microaerophilic, and acidophilic bacterial species. L. acidophilus strains in the gastrointestinal tracts of humans and other animals have been profiled, but strains found in the canine gut have not been studied yet. Our study helps in understanding the genetic features of the L. acidophilus C5 strain found in the canine gut, determining its adaptive features evolved to survive in the canine gut environment, and in elucidating its probiotic functions. To examine the canine L. acidophilus C5 genome, we isolated the C5 strain from a Korean dog and sequenced it using PacBio SMRT sequencing technology. A comparative genomic approach was used to assess genetic relationships between C5 and six other strains and study the distinguishing features related to different hosts. We found that most genes in the C5 strain were related to carbohydrate transport and metabolism. The pan-genome of seven L. acidophilus strains contained 2,254 gene families, and the core genome contained 1,726 gene families. The phylogenetic tree of the core genes in the canine L. acidophilus C5 strain was very close to that of two strains (DSM20079 and NCFM) from humans. We identified 30 evolutionarily accelerated genes in the L. acidophilus C5 strain in the ratio of non-synonymous to synonymous substitutions (dN/dS) analysis. Five of these thirty genes were associated with carbohydrate transport and metabolism. This study provides insights into genetic features and adaptations of the L. acidophilus C5 strain to survive the canine intestinal environment. It also suggests that the evolution of the L. acidophilus genome is closely related to the host's evolutionary adaptation process.