References
- Orpin CG. Studies on the rumen flagellate Neocallimastix frontalis. J Gen Microbiol 1975;91:249-62. https://doi.org/10.1099/00221287-91-2-249
- Li Y, Li Y, Jin W, et al. Combined genomic, transcriptomic, proteomic, and physiological characterization of the growth of Pecoramyces sp. F1 in monoculture and co-culture with a syntrophic methanogen. Front Microbiol 2019;10:435. https://doi.org/10.3389/fmicb.2019.00435
- Edwards JE, Forster RJ, Callaghan TM, et al. PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: insights, challenges and opportunities. Front Microbiol 2017;8:1657. https://doi.org/10.3389/fmicb. 2017.01657
- Teunissen MJ, Kets EPW, Op den Camp HJM, Huis in't Veld JHJ, Vogels GD. Effect of coculture of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities. Arch Microbiol 1992;157:176-82. https://doi.org/10.1007/BF00245287
- Bauchop T, Mountfort DO. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl Environ Microbiol 1981;42:1103-10. https://doi.org/10.1128/AEM.42.6.1103-1110.1981
- Jin W, Cheng YF, Mao SY, Zhu WY. Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. Bioresour Technol 2011; 102:7925-31. https://doi.org/10.1016/j.biortech.2011.06.026
- Joblin KN, Naylor GE, Williams AG. Effect of Methanobrevibacter smithii on xylanolytic activity of anaerobic ruminal fungi. Appl Environ Microbiol 1990;56:2287-95. https://doi.org/10.1128/AEM.56.8.2287-2295.1990
- Cheng YF, Edwards JE, Allison GG, Zhu WY, Theodorou MK. Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture. Bioresour Technol 2009;100:4821-8. https://doi.org/10.1016/j.biortech.2009.04.031
- Barichievich EM, Calza RE. Supernatant protein and cellulase activities of the anaerobic ruminal fungus Neocallimastix frontalis EB188. Appl Environ Microbiol 1990;56:43-8. https://doi.org/10.1128/AEM.56.1.43-48.1990
- Haitjema CH, Solomon KV, Henske JK, Theodorou MK, O'Malley MA. Anaerobic gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol Bioeng 2014;111:1471-82. https://doi.org/10.1002/bit.25264
- Marvin-Sikkema FD, Gomes TMP, Grivet JP, Gottschal JC, Prins RA. Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2. Arch Microbiol 1993;160:388-96. https://doi.org/10.1007/BF00252226
- Ma B, Liu J, Zhang Q, et al. Metabolomic profiles delineate signature metabolic shifts during estrogen deficiency-induced bone loss in rat by GC-TOF/MS. PLOS One 2013;8:e54965. https://doi.org/10.1371/journal.pone.0054965
- Ma B, Li X, Zhang Q, et al. Metabonomic profiling in studying anti-osteoporosis effects of strontium fructose 1,6-diphosphate on estrogen deficiency-induced osteoporosis in rats by GC/TOF-MS. Eur J Pharmacol 2013;718:524-32. https://doi.org/10.1016/j.ejphar.2013.06.030
- Thevenot EA, Roux A, Xu Y, Ezan E, Junot C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res 2015;14:3322-35. https://doi.org/10.1021/acs.jproteome.5b00354
- Li Y, Jin W, Cheng Y, Zhu W. Effect of the associated methanogen Methanobrevibacter thaueri on the dynamic profile of end and intermediate metabolites of anaerobic fungus Piromyces sp. F1. Curr Microbiol 2016;73:434-41. https://doi.org/10.1007/s00284-016-1078-9
- Nakashimada Y, Srinivasan K, Murakami M, Nishio N. Direct conversion of cellulose to methane by anaerobic fungus Neocallimastix frontalis and defined methanogens. Biotechnol Lett 2000;22:223-7. https://doi.org/10.1023/A:1005666428494
- Leis S, Dresch P, Peintner U, et al. Finding a robust strain for biomethanation: anaerobic fungi (Neocallimastigomycota) from the Alpine ibex (Capra ibex) and their associated methanogens. Anaerobe 2014;29:34-43. https://doi.org/10.1016/j.anaerobe.2013.12.002
- Wei YQ, Yang HJ, Luan Y, Long RJ, Wu YJ, Wang ZY. Isolation, identification and fibrolytic characteristics of rumen fungi grown with indigenous methanogen from yaks (Bos grunniens) grazing on the Qinghai-Tibetan Plateau. J Appl Microbiol 2016;120:571-87. https://doi.org/10.1111/jam.13035
- Wei YQ, Long RJ, Yang H, et al. Fiber degradation potential of natural co-cultures of Neocallimastix frontalis and Methanobrevibacter ruminantium isolated from yaks (Bos grunniens) grazing on the Qinghai Tibetan Plateau. Anaerobe 2016;39: 158-64. https://doi.org/10.1016/j.anaerobe.2016.03.005
- Sun M, Jin W, Li Y, Mao S, Cheng Y, Zhu W. Isolation and identification of cellulolytic anaerobic fungi and their associated methanogens from Holstein cow. Acta Microbiologica Sinica 2014;54:563-71. https://doi.org/10.13343/j.cnki.wsxb.2014.05.011
- Li YF, Jin W, Mu CL, Cheng YF, Zhu WY. Indigenously associated methanogens intensified the metabolism in hydrogenosomes of anaerobic fungi with xylose as substrate. J Basic Microbiol 2017;57:933-40. https://doi.org/10.1002/jobm.201700132
- Cheng YF, Jin W, Mao SY, Zhu WY. Production of citrate by anaerobic fungi in the presence of co-culture methanogens as revealed by 1H NMR spectrometry. Asian-Australas J Anim Sci 2013;26:1416-23. https://doi.org/10.5713/ajas.2013.13134
- Kown M, Song JY, Ha JK, Park HS, Chang JS. Analysis of functional genes in carbohydrate metabolic pathway of anaerobic rumen fungus Neocallimastix frontalis PMA02. Asian-Australas J Anim Sci 2009;22:1555-65. https://doi.org/10.5713/ajas.2009.80371
- Hackstein JHP, Akhmanova A, Boxma B, Harhangi HR, Voncken FGJ. Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol 1999;7:441-7. https://doi.org/10.1016/S0966-842X(99)01613-3
- Akhmanova A, Voncken FGJ, Hosea KM, et al. A hydrogenosome with pyruvate formate-lyase: Anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol Microbiol 1999;32:1103-14. https://doi.org/10.1046/j.1365-2958.1999.01434.x
Cited by
- Effects of Olive (Olea europaea L.) Leaves with Antioxidant and Antimicrobial Activities on In Vitro Ruminal Fermentation and Methane Emission vol.11, pp.7, 2021, https://doi.org/10.3390/ani11072008