• Title/Summary/Keyword: gas-carburization

Search Result 16, Processing Time 0.026 seconds

A Study on the Carburization Mechanism of Iron by Solid Carbon (고체탄소(固體炭素)에 의한 철(鐵)의 침탄기구(浸炭機構)에 대(對)한 연구(硏究))

  • Kwon, Ho-Young;Cho, Tong-Rae;Kang, Sei-Sun
    • Journal of Korea Foundry Society
    • /
    • v.8 no.3
    • /
    • pp.287-295
    • /
    • 1988
  • The experiment was carried out for the purpose of studying the carburization of pure iron ingot and sintered iron powder by solid carbon in the atmosphere of CO gas. The volocity of carburization was estimaed by the diffusion coefficient D calculated by carburization equation. The results obtained were as follow: 1. The higher the carburization temperature, carburization depth and carbon concentration were increased, and the melting zone which had $2.8{\sim}3.4%C$ at the $3{\sim}4mm$ from interface of carburization was formed at $1300^{\circ}C$. 2. The main carburization mechanism of pure iron ingot and the sintered iron powder were proceeded by CO gas up to $1100^{\circ}C$, solid carbon over than $1300^{\circ}C$, respectively. 3. The main carburization mechanism of pure iron ingot at $1200^{\circ}C$ was proceeded by solid carbon, and sintered iron powder was proceeded bs CO gas, however, in case the reaction time, the carburization was proceeded by solid carbon over than 5hrs. 4. The diffusion coefficient D of carbon were $0.559{\times}10^{-6}cm^2.sec^{-1}$ at $1100^{\circ}C$, $0.237{\times}10^{-6}cm^2.sec^{-1}$ at $1200^{\circ}C$, $0.087{\times}10^{-6}cm^2.sec^{-1}$ at $1300^{\circ}C$, in case of pure iron ingot carburized. 5. The diffusion coefficient D of carbon were $0.124\;cm^2.sec^{-1}$ at $1100^{\circ}C$, $0.102\;cm^2.sec^{-1}$ at $1200^{\circ}C$, $0.480\;{\times}10^{-6}cm^2.sec^{-1}$ at $1300^{\circ}C$, in the case of sintered iron carburized at the pressuring $4ton\;/\;cm^2$.

  • PDF

A Study on the Carburization of iron (철의 침탄기구에 대한 연구)

  • 권호영;조통래;권혁무
    • Journal of the Korean Professional Engineers Association
    • /
    • v.20 no.4
    • /
    • pp.5-11
    • /
    • 1987
  • The experiment was carried out for the purpose of studying the carburization of pure iron ingot and sintered iron powder by solid carbon in the atmosphere of $N_2$ gas. The velocity of carburization was estimated by the diffusion coefficient D calculated by carburization equation. The results obtained were as follows ; 1. The briqueted sample of iron fine powder which made by higher pressure, carburization depth and carbon concentration were increased as much, and pure iron shelved the maximum value. 2, The higher the carburization temperature, carburization depth and carbon concentration were increased, and the melting zone which had 3.0~3.3%C at the interface of carburization was formed at 130$0^{\circ}C$. As the pure iron ingot was carburized, the diffusion coefficient D of carbon were 0.211$\times$$10^{-6}$$\textrm{cm}^2$ㆍsec$^{-1}$ at 120$0^{\circ}C$ and 0.391$\times$$10^{-6}$$\textrm{cm}^2$ㆍsec$^{-1}$ at 130$0^{\circ}C$, respectively. 4. As the sintered iron powder was carburized at the pressure of 4 ton/$\textrm{cm}^2$, the diffusion coefficient of carbon were 0.157$\times$$10^{-6}$$\textrm{cm}^2$ㆍsec$^{-1}$ at 120$0^{\circ}C$ and 0.103$\times$$10^{-5}$$\textrm{cm}^2$ㆍsec$^{-1}$ at 130$0^{\circ}C$, respectively.

  • PDF

Development of Process Technology for Low Pressure Vaccum Carburizing (저압식 진공 침탄(LPC) 열처리 공정 기술 개발)

  • Dong, Sang-Keun;Yang, Jae-Bok
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.231-237
    • /
    • 2004
  • Vacuum carburizing continues to gain acceptance as an alternative to atmosphere carburizing particularly in the car industry. The advantages of low-pressure carburization over atmospheric gas carburization is not only the creation of a surface entirely free of oxide and the environmentally friendly nature of these methods but also an improvement in deformation behaviour achieved by combining carburization with gas quenching, a reduction in batch times by increasing the carburization temperature, low gas and energy consumption and the prevention of soot to a large extent. In present study, an improved vacuum carburizing method is provided which is effective to deposit carbon in the surface of materials and to reduce cycle time. Also LPC process simulator was made to optimize to process controls parameters such as pulse/pause cycles of pressure pattern, temperature, carburizing time, diffusion time. The carburizing process was simulated by a diffusion calculation program, where as the model parameters are proposed with help the experimental results and allows the control of the carburizing process with good accordance to the practical results. Thus it can be concluded that LPC process control method based on the theoretical simulation and experimental datas appears to provide a reasonable tool for prototype LPC system.

  • PDF

Carbon Monoxide Gas Carburization Behavior of Molybdenum Materials

  • Hieda, Koji;Nagae, Masahiro;Yoshio, Tetsuo;Takada, Jun;Hiraoka, Yutaka;Takida, Tomohiro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1159-1160
    • /
    • 2006
  • For pure Molybdenum carburized in mixed gases of argon and carbon monoxide, microstructural observations were carried out. X-ray diffraction analysis for carburized specimens revealed that brittle ${\alpha}-Mo_2C$- layer hardly formed in the case of low carbon monoxide concentration. Fracture strength of the specimen carburized at 1673 K for 16 h is about 550 MPa higher than that of the un-carburized specimen. SEM observation revealed that with increasing carburizing temperature, the region demonstrating a transgranular fracture mode progressed towards the center of specimen. This result means that the grain boundaries were strengthened by the grain boundary diffusion of carbon and the strength of grain boundaries exceeded that of grain itself.

  • PDF

A Study of Reduced and Carburized Reactions in Dry-milled $WO_3+Co_3O_4+C$ Mixed Powders with Different Carbon Content

  • Im, Hoo-Soon;Lee, Wan-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.648-649
    • /
    • 2006
  • The dry-milling technique was used for mixing and crushing oxides and graphite powders. The ratio of ball-to-powder was 30:1 and argon gas was filled in jar. The excess carbon was $10{\sim}20wt%$ of the stoichiometric amount. The dry-milling was carried for 20 hours. The mixed powders were reduced and carburized at $900{\sim}980^{\circ}C$ for 3 hours flowing Ar gas in tube furnace. The dry-milled powders showed the wide diffraction patterns of X-ray. The reactions of reduction and carburization were completed in 3 hours at $980^{\circ}C$. After the reactions, the mean size of WC particles was about 200 nm. The content of free carbon in WC/Co mixed powders was less as the reaction temperature increased.

  • PDF

Change of Particle Morphology and Ingredient Phase of WC and WC-Co Nanopowders Fabricated by Chemical Vapor Condensation during Subsequent Heat-Treatment (기상응축법으로 제조한 나노 WC및 WC-Co분말의 후속 열처리에 의한 상 및 협상 변화)

  • 김진천;하국현;김병기
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.124-129
    • /
    • 2004
  • Nanosized WC and WC-Co powders were synthesised by chemical vapor condensation(CVC) process using the pyrolysis of tungsten hexacarbonyl(W(CO)$_6$) and cobalt octacarbonyl(Co$_2$(CO)$_8$). The microstructural changes and phase evolution of the CVC powders during post heat-treatment were studied using the XRD, FE-SEM, TEM, and ICP-MS. CVC powders were consisted of the loosely agglomerated sub-stoichimetric WC$_{1-x}$ and the long-chain Co nanopowders. The sub-stochiometric CVC WC and WC-Co powders were carburized using the mixture gas of CH$_4$-H$_2$ in the temperature range of 730-85$0^{\circ}C$. Carbon content of CVC powder controlled by the gas phase carburization at 85$0^{\circ}C$ was well matched with the theoretical carbon sioichiometry of WC, 6.13 wt%. During the gas phase carburization, the particle size of WC increased from 20 nm to 40 nm and the long chain structure of Co powders disappeared.

Influence of Super Carburization on the Roller Pitting Fatigue Life of 0.16C-0.60Si-2.00Cr-0.34Mo Steel (0.16C-0.60Si-2.00Cr-0.34Mo강의 피팅강도에 미치는 고탄소 침탄의 영향)

  • Shin, Jung-Ho;Lee, Woon-Jae;Kim, Young-Pyo;Ko, In-Yong
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.517-522
    • /
    • 2012
  • In this study, a super carburizing treatment was applied to improve roller pitting fatigue life. It produced excellent properties of surface hardness and temper softening resistance by forming precipitation of fine and spherodized carbides on a tempered marstensite matrix through the repeated process of carburization and diffusion after high temperature carburizing step 1. The cycle II performed two times carburizing/diffusion cycle (process) after super carburization at $1,000^{\circ}C$ had fine and spherodized carbides to subsurface $200{\mu}m$. In this case, the carbide was $(Fe,Cr)_3C$ and there was not any massive carbides. In the case of Cycle II, the roller pitting fatigue life had a 6.15 million cycles. It was improved 48% compared to normal gas carburizing treatment.

Behavior of Reduction and Carburization of EAF Dust and Mill Scale (전기로 분진과 압연 Scale의 환원 및 탄화거동)

  • Hwang Ho-Sun;Chung Uoo-Chang;Chung Won-Sub;Chung Won-Bae
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.50-56
    • /
    • 2003
  • To be recycled iron and heat source in EAF, EAF dust and mill scale generated from steelmaking plant should be made to iron carbide. Behavior of reduction and carburization in EAF dust and mill scale is studied to get fundamental data. EAF dust and mill scale are carburized at $650^{\circ}C$ by 100% CO gas. The carbon content of iron carbide(about 9 wt,% C) is higher than that of cementite without free carbon. The 1.2 times of calculated carbon content is suitable for reduction of EAF dust. The reduction temperature is appropriate to $900^{\circ}C$ in EAF dust and $1000^{\circ}C$ in mill scale. The carburization rate of mill scale are faster than those of EAF dust. The composition of super iron carbide is almost $Fe_2$C.

Synthesization of WC/Co Composite Powders Doped V and Cr by Mechanochemical Method

  • Im, Hoo-Soon;Hur, Jah-Mahn;Lee, Wan-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.646-647
    • /
    • 2006
  • Nano-sized WC particles in WC/Co composite powders were synthesized by mechanochemical method. The raw powders$(WO_3,\;Co_3O_4,\;VC,\;Cr_3C_2$ and graphite) were mixed by planetary milling for 30 hours. The compositions were WC-10 and -20 wt% Co added VC and $Cr_3C_2$. The direct reduction and carburization of the mixed powders were carried at $900\;^{\circ}C$ for 1 to 3 hours under flowing Ar gas. The mean size of WC particles in WC/Co composite powders was about 16 nm. The resultant powders were compacted and sintered at $1300{\sim}1360\;^{\circ}C$ for 0.5 hour. After sintering the mean size of WC particles was about 50 nm.

  • PDF