A Study on the Carburization Mechanism of Iron by Solid Carbon

고체탄소(固體炭素)에 의한 철(鐵)의 침탄기구(浸炭機構)에 대(對)한 연구(硏究)

  • Kwon, Ho-Young (Department of Metallurgical Engineering, Chung Nam National University) ;
  • Cho, Tong-Rae (Department of Metallurgical Engineering, Chung Nam National University) ;
  • Kang, Sei-Sun (Department of Metallurgical Engineering, Taejon National University)
  • 권호영 (충남대학교 공과대학 금속공학과) ;
  • 조통래 (충남대학교 공과대학 금속공학과) ;
  • 강세선 (대전공업대학 금속공학과)
  • Published : 1988.09.30

Abstract

The experiment was carried out for the purpose of studying the carburization of pure iron ingot and sintered iron powder by solid carbon in the atmosphere of CO gas. The volocity of carburization was estimaed by the diffusion coefficient D calculated by carburization equation. The results obtained were as follow: 1. The higher the carburization temperature, carburization depth and carbon concentration were increased, and the melting zone which had $2.8{\sim}3.4%C$ at the $3{\sim}4mm$ from interface of carburization was formed at $1300^{\circ}C$. 2. The main carburization mechanism of pure iron ingot and the sintered iron powder were proceeded by CO gas up to $1100^{\circ}C$, solid carbon over than $1300^{\circ}C$, respectively. 3. The main carburization mechanism of pure iron ingot at $1200^{\circ}C$ was proceeded by solid carbon, and sintered iron powder was proceeded bs CO gas, however, in case the reaction time, the carburization was proceeded by solid carbon over than 5hrs. 4. The diffusion coefficient D of carbon were $0.559{\times}10^{-6}cm^2.sec^{-1}$ at $1100^{\circ}C$, $0.237{\times}10^{-6}cm^2.sec^{-1}$ at $1200^{\circ}C$, $0.087{\times}10^{-6}cm^2.sec^{-1}$ at $1300^{\circ}C$, in case of pure iron ingot carburized. 5. The diffusion coefficient D of carbon were $0.124\;cm^2.sec^{-1}$ at $1100^{\circ}C$, $0.102\;cm^2.sec^{-1}$ at $1200^{\circ}C$, $0.480\;{\times}10^{-6}cm^2.sec^{-1}$ at $1300^{\circ}C$, in the case of sintered iron carburized at the pressuring $4ton\;/\;cm^2$.

Keywords