• Title/Summary/Keyword: gas purification

Search Result 219, Processing Time 0.038 seconds

A Numerical Analysis of Direct Contact Membrane Distillation for Hollow Fiber Membrane (기체분리용 고분자 멤브레인의 최근 개발 동향)

  • Kim, Tae-Heon;Jeong, Jung-Chae;Park, Jong-Man;Woo, Chang-Hwa
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.267-277
    • /
    • 2010
  • Gas separation membranes have been developed for decades in various areas to replace the conventional processes. Membrane processes for gas separation have many advantages of energy saving, compact size, and easy scale-up. Nowadays, gas separation processes is widely spreaded in nitrogen generating system, hydrogen generating system, membrane dryer, on board inert gas generating system, natural gas purification, biogas purification and fuel cells. Carbon dioxide separation process using membrane would be a strong candidate of carbon dioxide capturing process. In order to broaden the scope of application of gas separation membranes, development of new materials which can overcome the borderline of Robeson's plot should be necessary, so that many researchers and companies are trying to develop the new materials like polymers containing cardo and spiro group and PIMs (polymers for intrinsic microporosity).

Simulation of Electric Potential and Electric Field for Wire-Plate Type Plasma Reactor Manufacture (선 대 평판형 플라즈마 반응기 제작을 위한 전위 및 전계 해석)

  • Lee, Dong-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.4
    • /
    • pp.167-171
    • /
    • 2003
  • Due to advancement of industrialization, the flue gas from the combustion of industrial factories and various means of transportation have polluted air. Therefore, it is necessary to develop new techniques of air purification. In order to produce a more effective reactor, simulation were conducted using the Flux-II D program. The condition of the simulation were as follows: The height of the plate electrode was 0 mm or 2 mm higher than that of the wire electrode. The distance between the electrodes was 12 mm, and the diameter of the wire electrode was 0.5 mm or 1.0 mm. The results of the electric potential and electric field simulations show that pollutants will be more effectively removed due to the dielectric strength between wire electrode and plate electrode which was strong, and wire electrodes which were concentrated in a high electric field.

Separation and Purification of Bio Gas by Hollow Fiber Gas Separation Membrane Module (중공사형 기체분리막 모듈을 이용한 바이오가스의 분리 및 정제)

  • Koh, Hyung-Chul;Ha, Seong-Yong;Woo, Seung-Moon;Nam, Sang-Yong;Lee, Byung-Seong;Lee, Chung-Seop;Choi, Whee-Moon
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • Hollow fiber membrane using CTA polymers were prepared by the phase separation method for the separation and purification of biogas and the hollow fiber gas separation membrane modules with the effective surface area of 0.17 $m^2$ were prepared. The pure gas permeation properties of membrane modules for methane, oxygen and carbon dioxide were measured. The permeance of $CO_2$ and $CH_4$were 0.46 GPU and 18.52 GPU, respectively, therefore, the high $CO_2$/$CH_4$ selectivity of 40.4 was obtained. The separation and purification test for 4 different simulated mixed gases were carried out after the pure gas test and the gas concentration and flux of the permeate at the various stage-cut were measured from the 1 stage, 2 stage, and 3 stage cascade of membrane modules. In the 1 stage test, the concentration of $CH_4$ increased as the increase of the stage-cut, while the $CH_4$ recovery efficiency ratio decreased. In the 2 stage test, the $CH_4$ recovery efficiency ratio increased compared to the 1 stage. The 3 stage test was employed to reduce the loss of $CH_4$ in biogas and the result showed less than 5% of $CH_4$ recovery loss.

Evaluation of a Prototype SF6 Purification System for Commercialization

  • Seo, Hai-Kyung;Lee, Jeong Eun;Kim, Kwang Sin;Kim, Kyeongsook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.1
    • /
    • pp.53-58
    • /
    • 2020
  • Korea Electric Power Corporation (KEPCO) uses large amount of SF6, one of the potent greenhouse gases, in electric equipment for electrical insulation. KEPCO is developing SF6 recovery and purification technology to minimize the release of SF6 into the environment, to secure certified emission reduction, and to save purchase cost of new SF6 by reusing the refined SF6. A prototype SF6 purification system using cryogenic solidification technology has been built in demonstration scale. To evaluate the feasibility of the commercialization, the system has been operated to purify large amount of used SF6 in a long-term operation and the performance has been economically evaluated. The system was stable enough for commercial operation such that it was able to purify 5.4 tons of used SF6 from power transmission equipment in 2-month operation. Over 99% of the SF6 was recovered from the used gas and the purity of the purified gas was over 99.7 vol%. The operation cost, which is the cost of refrigerant (liquid nitrogen), electricity and labor, per kilogram of purified SF6 was 6,526 KRW. Considering the price of new SF6 in Korea is about 15,000 KRW per kilogram this year, about 56% of the purchase cost can be saved.

Study on Micro-bubble Generation Characteristics in Venturi Cavitation using Laser Diffractometer (레이저 회절 측정기를 이용한 벤츄리 캐비테이션에서의 마이크로버블 발생 특성 연구)

  • Lim, Yun Gyu;Yang, Hae Jeong;Kim, Yung Il
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • The use of micro bubbles in industrial fields has been increasing in the recent years., particularly micro-bubble sterilization and water purification effects. Various methods have been developed for the generation of micro-bubbles. Depending on the method of generating bubbles, the micro-bubbles can be roughly classified into saturation molding, cavitation and rotation flow types. The objective of this study was to use ventilated tube type as a method of generating micro-bubbles in order to purify large amount of water quality such as lakes and reservoirs. This method shows a difference in efficiency in which micro-bubbles are generated depending on the contact ratio of gas to liquid. The study also investigated the optimal gas liquid contact ratio by applying various orifice methods and investigated the optimum condition of micro-bubble generation by gas Based on this, a technology to develop a micro-bubble generator with a venturi type nozzle shape that has a high water purification effect was developed.

The Evaluation of CO Adsorbents Used in PSA Process for the Purification of Reformed Hydrogen (개질 수소 정제용 PSA 공정을 위한 CO 흡착제의 성능 평가)

  • PARK, JIN-NAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.628-635
    • /
    • 2016
  • Natural gas reformed hydrogen is used as a fuel of fuel cell vehicle, PSA process is used for the purification of reformed hydrogen. In this study, the performance of CO adsorbent in PSA process was evaluated. Zeolite adsorbents used in the commercial PSA process is used. The physical and chemical properties of adsorbents were characterized using BET apparatus, XRD, and FE-SEM. The breakthrough apparatus modified from GC was used for the CO breakthrough experiment, the quantitative analysis of CO adsorption capacity was performed using CO breakthrough curve. Zeolite 10X and 13X showed superior CO adsorption capacity than activated alumina. The CO adsorption capacity of zeolite 10X is more than twice of zeolite 13X even the BET surface area is low. It seems that the presence of $Ca^{2+}$ cation in zeolite 10X is beneficial to the adsorption of CO.

Design for Landfill Gas Appliation by Low Calorific Gas Turbine and Green House Optimization Technology (Low Calorific Gasturbine 매립지 적용 및 유리온실 운용기술 설계)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin;Rhim, Sang-Gyu
    • New & Renewable Energy
    • /
    • v.6 no.2
    • /
    • pp.27-32
    • /
    • 2010
  • Low Calorific Gas Turbine (LCGT) has been developed as a next generation power system using landfill gas (LFG) and biogas made from various organic wastes, food Waste, waste water and Livestock biogas. Low calorific fuel purification by pretreatment system and carbon dioxide fixation by green house system are very important design target for the optimum applications of LCGT. Main troubles of Low Calorific Gas Turbine system was derived from the impurities such as hydro sulfide, siloxane, water contained in biogas. Even if the quality of the bio fuel is not better than natural gas, LCGT may take low quality gas fuel and environmental friendly power system. The mechanical characterisitics of LCGT system is a high energy efficiency (>70%), wide range of output power (30 kW - 30 MW class) and very clean emission from power system (low NOx). A green house has been designed for four different carbon dioxide concentration from ambient air to 2000 ppm by utilizing the exhaust gas and hot water from LCGT system. LCGT is expected to contribute achieving the target of Renewable Portfolio Standards (RPS).