• 제목/요약/키워드: gas production rate

검색결과 670건 처리시간 0.025초

셰일가스정 천이유동 생산자료분석의 기술적 고려사항 (Technical Consideration for Production Data Analysis with Transient Flow Data on Shale Gas Well)

  • 한동권;권순일
    • 한국가스학회지
    • /
    • 제20권1호
    • /
    • pp.13-22
    • /
    • 2016
  • 본 연구에서는 다단계 수압파쇄와 수평시추가 적용된 셰일가스정에서 생산자료의 유동형태에 따라 적절한 분석 방법과 궁극가채량을 산출하는 기법을 결정하는 방법을 정리한 흐름도를 제안하였다. 또한 1차 천이유동만이 나타나는 현장자료에 대해 생산천이유동 분석을 수행할 때 고려해야 하는 사항들을 제안하였다. log-log 그래프와 시간제곱근 그래프 분석을 통해 생산자료의 유동 특성을 분류할 수 있고, 이 결과, 1차 천이유동만이 나타나는 생산자료는 이 유동이 종료되는 시점을 정확히 예측하여 이 시점을 기준으로 생산성을 각각 예측하여야 한다. 이 시점은 미세탄성파 탐사자료 해석을 통해 균열자극부피의 면적을 계산함으로써 산출할 수 있다. 공저압력자료나 미세탄성파 탐사자료가 없다면 셰일가스정에 적절한 경험적 방법을 활용하여 생산성을 예측할 수 있다. 생산기간이 짧은 자료는 상대적으로 생산기간이 긴 인접 생산정의 자료를 활용하여 생산기간의 적절성을 평가한 후 필요하다면 생산초기 자료를 제외하고 분석하는 것이 정확도를 향상시킬 수 있다. 또한 미세탄성파 탐사자료 해석에 의해 산출된 SRV는 분석방법이나 분석자의 주관에 의해 과대, 과소 평가될 수 있기 때문에 파쇄 단계, 파쇄유체 주입량, 생산성 분석을 통한 적절성평가를 수행하여 필요한 경우, 저류층 시뮬레이션, 균열모델링, 생산천이분석을 통해 재산정하는 것이 필요하다.

Influence of Yeast Fermented Cassava Chip Protein (YEFECAP) and Roughage to Concentrate Ratio on Ruminal Fermentation and Microorganisms Using In vitro Gas Production Technique

  • Polyorach, S.;Wanapat, M.;Cherdthong, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권1호
    • /
    • pp.36-45
    • /
    • 2014
  • The objective of this study was to determine the effects of protein sources and roughage (R) to concentrate (C) ratio on in vitro fermentation parameters using a gas production technique. The experimental design was a $2{\times}5$ factorial arrangement in a completely randomized design (CRD). Factor A was 2 levels of protein sources yeast fermented cassava chip protein (YEFECAP) and soybean meal (SBM) and factor B was 5 levels of roughage to concentrate (R:C) ratio at 80:20, 60:40, 40:60, 20:80, and 0:100, respectively. Rice straw was used as a roughage source. It was found that gas production from the insoluble fraction (b) of YEFECAP supplemented group was significantly higher (p<0.05) than those in SBM supplemented group. Moreover, the intercept value (a), gas production from the insoluble fraction (b), gas production rate constants for the insoluble fraction (c), potential extent of gas production (a+b) and cumulative gas production at 96 h were influenced (p<0.01) by R:C ratio. In addition, protein source had no effect (p>0.05) on ether in vitro digestibility of dry matter (IVDMD) and organic (IVOMD) while R:C ratio affected the IVDMD and IVOMD (p<0.01). Moreover, YEFECAP supplanted group showed a significantly increased (p<0.05) total VFA and $C_3$ while $C_2$, $C_2:C_3$ and $CH_4$ production were decreased when compared with SBM supplemented group. In addition, a decreasing R:C ratio had a significant effect (p<0.05) on increasing total VFA, $C_3$ and $NH_3$-N, but decreasing the $C_2$, $C_2:C_3$ and CH4 production (p<0.01). Furthermore, total bacteria, Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus populations in YEFECAP supplemented group were significantly higher (p<0.05) than those in the SBM supplemented group while fungal zoospores, methanogens and protozoal population remained unchanged (p>0.05) as compared between the two sources of protein. Moreover, fungal zoospores and total bacteria population were significantly increased (p<0.01) while, F. succinogenes, R. flavefaciens, R. albus, methanogens and protozoal population were decreased (p<0.01) with decreasing R:C ratio. In conclusion, YEFECAP has a potential for use as a protein source for improving rumen fermentation efficiency in ruminants.

사이클론 연소기를 이용한 탄화왕겨의 제조(II) (Production of Carbonized Rice Husk by a Cyclone Combustor(II))

  • 김원태;노수영
    • Journal of Biosystems Engineering
    • /
    • 제24권6호
    • /
    • pp.487-492
    • /
    • 1999
  • One of effective utilization method of rice husk is to utilize it as culture material by carbonizing the rice husk. As a second part of a series to investigate the effective and continuous production of carbonized rice husk by a cyclone combustor, a non-slagging vertical cyclone combustor without vortex collector pocket was introduced. Isothermal and mixed firing with LPG and rice husk were undertaken in order to characterize the system. Inert rice husk was used during the isothermal test to find mass of rice husk collected. It was impossible to ignite rice husk itself over the experimental conditions considered in this experiment. Cyclone combustor was operated at temperatures of 1,273~1,473K. Detailed combustion data were obtained from a pilot unit with the air flow rate of 70m$^3$/h and rice husk feed of 2kg. The equivalence ratio ranged from 0.66 to 3.48. The auxiliary gas flow rate was varied from 3.22 to 12.86$\ell$/min. The weight reduction, pH and particle size distribution of carbonized rice husk were measured to evaluate the quality of carbonized rice husk. An analysis of exhaust gas emission was conducted to characterize the combustor. The required carbonized rice husk could be obtained at equivalence ratio of 1.68~2.17, combustor temperature of 1,273~1,373K and auxiliary gas flow rate of 3.22~6.43$\ell$/min. A method to reduce CO emissions should be employed.

  • PDF

Mixer design for improving the injection uniformity of the reduction agent in SCR system

  • Hwang, Woohyeon;Lee, Kyungok
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권1호
    • /
    • pp.63-69
    • /
    • 2017
  • In this paper, we propose a method to optimize the geometry and installation position of the mixer in the selective catalytic reduction (SCR) system by computational fluid dynamic(CFD). Using the commercial CFD software of CFD-ACE+, the flow dynamics of the flue gas was numerically analyzed for improving the injection uniformity of the reduction agent. Numerical analysis of the mixed gas heat flow into the upstream side of the primary SCR catalyst layer was performed when the denitrification facility was operated. The characteristics such as the flow rate, temperature, pressure loss and ammonia concentration of the mixed gas consisting of the flue gas and the ammonia reducing gas were examined at the upstream of the catalyst layer of SCR. The temperature difference on the surface of the catalyst layer is very small compared to the flow rate of the exhaust gas, and the temperature difference caused by the reducing gas hardly occurs because the flow rate of the reducing gas is very small. When the mixed gas is introduced into the SCR reactor, there is a slight tendency toward one wall. When the gas passes through the catalyst layer having a large pressure loss, the flow angle of the exhaust gas changes because the direction of the exhaust gas changes toward a smaller flow. Based on the uniformity of the flow rate of the mixed gas calculated at the SCR, it is judged that the position of the test port reflected in the design is proper.

천연가스 예혼합화염의 연소특성 및 축소반응메커니즘에 관한 연구 (Studies on Combustion Characteristics and Reduced Kinetic Mechanisms of Natural Gas Premixed Flames)

  • 이수룡;김홍집;정석호
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.166-177
    • /
    • 1998
  • Combustion characteristics of natural gas premixed flames is studied experimently and numerically by adopting a counterflow as a flamelet model in turbulent flames. Flame speeds are measured by employing LDV, and the results show that flame speed increases linearly with strain rate, which agrees well with numerical results. Parametric dependences of extinction strain rates are studied numerically with detailed kinetic mechanism to show that the addition of ethand to a methane premixed flame makes the flame more resistant to strain rate. The effect of pressure on the extinction strain rate is that the extinction strain rate increases up to 10 atm and them decreases, which is explained by competition of chain branching H+O2=OH+O and recombination reaction H+O2+M=HO2+M. Detailed mechanism having seventy-four step is systematically reduced to a nine-step and a five-step thermal NOx chemistry is reduced to two-step. Comparison between the results of the detailed and the reduced mechanisms demonstrates that the reduced mechanism successfully describes the essential features of natural gas premixed flames including extinction strain rate and NOx production.

  • PDF

Treatment of Wastewater from Purified Terephtalic Acid (PTA) Production in a Two-stage Anaerobic Expanded Granular Sludge Bed System

  • Lee, Young-Shin;Han, Gee-Bong
    • Environmental Engineering Research
    • /
    • 제19권4호
    • /
    • pp.355-361
    • /
    • 2014
  • The wastewater treatment with a two-phase expanded granular sludge bed (EGSB) system for anaerobic degradation of acetate, benzoate, terephtalate and p-toluate from purified terephtalic acid (PTA) production was studied. The feasibility and effectiveness of the system was evaluated in terms of organic oxidation by chemical oxygen demand (COD), gas production, bacterial adaptability and stability in the granular sludge. Average removal efficiencies 93.5% and 72.7% were achieved in the EGSB reactors under volumetric loading rates of $1.0-15kg-COD/m^3/day$ and terephtalate and p-toluate of 351-526 mg/L, respectively. Gas production reached total methane production rate of 0.30 L/g-COD under these conditions in the sequential EGSB reactor system. Higher strength influent COD concentration above 4.8 g-COD/L related to field conditions was fed to observe the disturbance of the EGSB reactors.

메탄가스를 이용한 폐주석산화물의 건식환원시스템 (Research of Dry Reduction Process of Waste Tin Oxide using Methane)

  • 정현철;김세권;김상열
    • 자원리싸이클링
    • /
    • 제31권6호
    • /
    • pp.18-24
    • /
    • 2022
  • 건축용 유리생산공정에서 유리의 평활도 제어를 위한 주석욕조에서 발생하는 폐주석 산화물로부터 천연가스를 이용하여 주석을 회수하는 건식환원공정을 제안하고 환원거동을 고찰하였다. 천연가스 건식환원시스템은 20kg급 연속생산 수직형 반응로로 상부취입, 하부토출 방식으로 시스템을 정립하였다. 모든 반응온도 조건에서 투입가스량이 증가할수록 회수율이 높아지는 결과를 얻었으며, 800℃, 4sccm 조건에서 97.2%의 회수율을 보였다. 반응가스분석결과 23%의 수소를 확인하였으며, 16.6%의 메탄가스 수소전환율을 보였다. 천연가스 환원 주석의 환원반응을 고찰함으로써 폐자원 환원/회수기술 정립에 대한 기초자료를 정립하였다.

고주파유도결합에 의해 여기된 물플라즈마로부터 수소생산에서 메탄가스 첨가효과 (Effect of CH4 addition to the H2 Plasma Excited by HF ICP for H2 Production)

  • 김대운;정용호;추원일;장수욱;이봉주;김영호;이승헌;권성구
    • 한국전기전자재료학회논문지
    • /
    • 제22권5호
    • /
    • pp.448-454
    • /
    • 2009
  • Hydrogen was produced from water plasma excited in high frequency (HF) inductively coupled tubular reactor. Mass spectrometry was used to monitor gas phase species at various process conditions, Water dissociation rate depend on the process parameters such as ICP power, $H_{2}O$ flow-rate and process pressure, Water dissociation percent in ICP reactor decrease with increase of chamber pressure, while increase with increase of ICP power and $H_{2}O$ flow rate. The effect of $CH_4$ gas addition to a water plasma on the hydrogen production has been studied in a HF ICP tubular reactor. The main roles of $CH_4$ additive gas in $H_{2}O$ plasma are to react with 0 radical for forming $CO_x$ and CHO and resulting additional $H_2$ production. Furthermore, $CH_4$ additives in $H_{2}O$ plasma is to suppress reverse-reaction by scavenging 0 radical. But, process optimization is needed because $CH_4$ addition has some negative effects such as cost increase and $CO_x$ emission.

Chemical Composition, In vitro Gas Production, Ruminal Fermentation and Degradation Patterns of Diets by Grazing Steers in Native Range of North Mexico

  • Murillo, M.;Herrera, E.;Carrete, F.O.;Ruiz, O.;Serrato, J.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권10호
    • /
    • pp.1395-1403
    • /
    • 2012
  • The objective of the study was to quantify annual and seasonal differences in the chemical composition, in vitro gas production, in situ degradability and ruminal fermentation of grazing steers… diets. Diet samples were collected with four esophageal cannulated steers ($350{\pm}3$ kg BW); and four ruminally cannulated heifers ($342{\pm}1.5$ kg BW) were used to study the dry matter degradation and fermentation in rumen. Data were analyzed with repeated measurements split plot design. The crude protein, in vitro dry matter digestibility and metabolizable energy were higher during the first year of trial and in the summer (p<0.01). The values of calcium, phosphorus, magnesium, zinc and copper were higher in summer (p<0.05). The gas produced by the soluble and insoluble fractions, as well as the constant rate of gas production were greater in summer and fall (p<0.01). The ammonia nitrogen ($NH_3N$) and total volatile fatty acids concentrations in rumen, the soluble and degradable fractions, the constant rate of degradation and the effective degradability of DM and NDF were affected by year (p<0.05) and season (p<0.01). Our study provides new and useful knowledge for the formulation of protein, energetic and mineral supplements that grazing cattle need to improve their productive and reproductive performance.

다중침전극형 플라즈마 반응기를 이용한 수소발생 특성 (The Hydrogen Generation's Characteristics using Plasma Reactor of Multi-needle Electrode Type)

  • 박재윤;김종석;정장근;고희석;박상현;이현우
    • 한국전기전자재료학회논문지
    • /
    • 제17권11호
    • /
    • pp.1246-1251
    • /
    • 2004
  • This paper is investigated about the effect of carrier gas type and the humidity for generating hydrogen gas. The vibration of the water surface is more powerful with increasing applied voltage. In this experimental reactor which is made of multi-needle and plate, the maximum acquired hydrogen production rate is about 3500 ppm. In the experimental result of generating hydrogen gas by non-thermal plasma reactor, the rate of generating hydrogen gas is different with what kind of carrier gas is. We used two types of carrier gas, such as $N_2$ and He. $N_2$ as carrier gas is more efficient to generate hydrogen gas than He because $N_2$ is reacted with $O_2$, which is made from water dissociation. In comparison with water droplet by humidifier and without water droplet by humidifier, the generation of hydrogen gas is decreased in case of water droplet by humidifier. That is the result that the energy for water dissociation is reduced on water surface because a part of plasma energy is absorbed at the small water molecular produced from humidifier.