• 제목/요약/키워드: gas pressure welding

검색결과 94건 처리시간 0.019초

CW Nd:YAG 레이저를 이용한 냉연강판의 용접특성 (Welding Characteristics of Cold Rolled Carbon Steel utilize CW Nd:YAG Laser)

  • 신병헌;유영태;신호준;안동규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.17-18
    • /
    • 2006
  • Laser welding of metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research works is to investigate the influence of the process parameters, such as the welding for metals with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the butt welding, the welding quality of the cut section, stain-stress behavior and the hardness of the welded part are investigated. From the results of the investigation, it has been shown that the optimal welding condition without defects in the vicinity of the welded area and with a good welding quality is 1400W of the laser power, 0.8m/min, 0.9m/min of welding speed and $4{\ell}$ in of pressure for shielding gas.

  • PDF

304 스테인리스강의 Plug 용접성에 관한 연구 (A Study on the Plug Weldability of 304 Stainless Steel)

  • 황종근;장경복;강성수
    • Journal of Welding and Joining
    • /
    • 제16권1호
    • /
    • pp.106-113
    • /
    • 1998
  • In this study, the plug weldability of STS 304 was investigated. The parameters which influence plug weldability were pushing pressure of the plates, position of welding wire and composition of shielding gases. Among these factors, the composition of shielding gases and hole diameter of the upper plate were found to be the major factors influencing weld quality. To evaluate weldability, tensile shear strength of the plug welded specimen was measured and compared with tensile strength of butt welded specimen. Hardness was measured for both plug weld and butt weld. The microstructure of the weld metal and HAZ were also characterized.

  • PDF

CW Nd:YAG 레이저를 이용한 중탄소강과 오스테나이트계 스테인레스강의 이종금속 용접 (Dissimilar Metal Welding of Medium Carbon Steel and Austenitic Stainless Steel utilize CW Nd:YAG Laser)

  • 신호준;안동규;임기건;신병헌;유영태
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.47-55
    • /
    • 2006
  • Laser welding of dissimilar metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research is to investigate the influence of the process parameters, such as the welding for SM45C and STS304 with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the dissimilar welding, the welding quality of the cut section, stress-strain behavior and the hardness of the welded metal are investigated. From the results of the investigation, it has been shown that the optimal voiding condition without defects in the vicinity of the welded area and with a good welding quality is 1600W of the laser power, 0.85m/min of welding speed and $4{\ell}/min$ of pressure for shielding gas.

마찰용접을 이용한 고강도 쇼크업소버 베이스 어셈블리의 제조 기술 개발 (Development of a High Strength Manufacturing Technology for the Shock Absorber Base Assembly Using Friction Welding)

  • 정호연
    • 산업경영시스템학회지
    • /
    • 제34권1호
    • /
    • pp.90-96
    • /
    • 2011
  • The shock absorber base assembly is one of the parts in the shock absorber equipment that controls the vehicle movement. It absorbs the shock and vibration to guarantee riding stability and comfort. It demands strength, reliability and strict airtightness of the welded section because the shock absorber base assembly is a container which resists pressure and needs durability by being filled with gas and oil. However, the current engineering needs a lot of production time, has a high cost and shows a low production rate. These problem due to the eight production processes, four of which are spot welding, reinforcement welding like metal active welding (MAG), prior process of the base assembly cap and tube for precision and pressing. We will analyze the manufacturing processes of the base assembly and suggest an improved manufacturing method that uses frictional welding. The results will show that the new method of the frictional welding is better than the previous welding technique. Through the use of this concept of frictional welding, the welding conjunction will be strengthened, measurements will be more precise, and the cost and the number of processes will be reduced.

얼음증발기 용접방법 개선에 관한 연구 (A Study on the Improvement of Welding Method for Ice Evaporator)

  • 이정연;유흥렬;손영득
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.558-564
    • /
    • 2021
  • 정수기는 최근 시장규모가 급격한 증가 추세에 있으며, 얼음 정수기의 얼음 생성량과 냉수 성능을 결정하는 핵심 부품인 증발기의 용접기술 향상을 요구하고 있다. 얼음 정수기의 finger type 증발기는 얼음을 탈빙 시키는 방법으로 순간 히터 방식과 고온 가스 방식으로 크게 구분되며 일부 대기업을 중심으로 생산 및 개발이 진행되고 있다. 두 방법은 장·단점을 가지고 있으며 고온 가스 방식 증발기는 특히 생산과정에서 고열의 산소 용접으로 인해 동파이프 내부에 pin hole 현상과 고압관 용접시 막힘 문제가 간헐적으로 발생하고 있다. 이는 정수기 사용시 얼음과 차가운 물의 생기지 않는 문제점을 가져오며 현장에서 수리가 불가능하다. 이러한 문제점을 해결하기 위해 본 논문에서는 고온 가스 증발기의 용접 불량을 개선하기 위해 cap jig를 적용하였다. 또한 산소용접 불꽃 크기를 조절하여 cap jig에 열원이 잘 공급될 수 있도록 하고 파압 시험과 테스트와 열충격 시험을 통해 유효성을 확인하였다.

7톤급 로켓엔진 가스발생기 개념설계 및 제작계획 (Conceptual Design and Manufacturing Scheme of a Gas Generator for 7 tonf Class Rocket Engine)

  • 임병직;김문기;강동혁;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.451-453
    • /
    • 2012
  • 7톤급 로켓엔진 가스발생기에 대한 개념설계와 제작방법에 대해서 기술하였다. 엔진 시스템 설계의 결과로서 연소실 압력, 혼합비, 전체유량이 각각 6 MPa, 0.321, 1kg/s로 결정되었다. 이 변수들을 기본으로 가스발생기의 개념설계가 수행되었고 외형 치수는 대략 ${\Phi}100{\times}250mm$ 정도이다. 가스발생기 대부분의 부품들은 브레이징이나 TIG 용접을 통해 서로 결합되며 가능한 모든 단계에서 강도/기밀시험을 수행하여 용접 부를 점검한다.

  • PDF

염화물 환경에서 스테인리스강 용접부의 공식저항성 향상을 위한 마찰교반공정 적용효과에 관한 연구 (A study on the Application Effect of Friction Stir Processing for Enhanced Pitting Corrosion Resistance of Stainless Steel Welds in Chloride Environment)

  • 하종문;심덕남;김승현
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.84-92
    • /
    • 2023
  • As temporary storage facilities for spent nuclear fuels in domestic nuclear power plants are expected to be saturated, external intermediate storage facilities would be required in the future. Spent nuclear fuels are stored in metal canisters and then placed in a dry environment within concrete or metal casing for operation. In the United States, the dry storage method for spent nuclear fuels has been operated for an extended period. Based on the corrosion experiences of dry storage canisters in chloride environments, numerous studies have been conducted to reduce corrosion in welds. With the construction of intermediate storage facilities in Korea for spent nuclear fuels expected near coastal areas adjacent to nuclear power plants, there is a need for research on the corrosion occurrence of welds and mitigation methods for canisters in chloride environments. In this paper, we measured and compared the residual stresses in the Heat-Affected Zones (HAZ) after electron beam welding (EBW) and gas tungsten arc welding (GTAW) processes for candidate materials such as 304L, 316L, and duplex stainless steel(DSS). We investigated the possibility of microstructure control through the application of surface modification processes using friction stir processing (FSP). Corrosion tests on each welded specimen revealed a higher corrosion rate in EBW welds compared to GTAW. Furthermore, it was confirmed that corrosion resistance improved due to phase refinement and redistribution of precipitates when FSP was applied.

용적 내부의 유동에 의한 모멘텀을 고려한 GMA 용접의 입상용적 이행에 대한 해석 (Analysis of Globular Transfer Considering Momentum Induced by Flow Within Molten Drop in GMAW)

  • ;이승현;강문진;유중돈
    • Journal of Welding and Joining
    • /
    • 제26권4호
    • /
    • pp.61-65
    • /
    • 2008
  • The static force balance model (SFBM) has been used to analyze drop transfer in gas metal arc welding. Although the SFBM is capable of predicting the detaching drop size in the globular mode with reasonable accuracy, discrepancy between the calculated and experimental results increases with current. In order to reduce discrepancy, the SFBM is modified by considering the momentum of the molten metal flow, which is generated by the pinch pressure. The momentum increases with smaller drop size and becomes compatible to the electromagnetic force. The modified force balance model (MFBM) predicts the experimental results more accurately, and extends its application to the projected mode.

Alloy 617 확산용접재의 고온 인장강도 (High-Temperature Tensile Strengths of Alloy 617 Diffusion Weldment)

  • 사인진;황종배;김응선
    • 한국압력기기공학회 논문집
    • /
    • 제14권1호
    • /
    • pp.15-23
    • /
    • 2018
  • A compact heat exchanger is one of critical components in a very high temperature gas-cooled reactor (VHTR). Alloy 617 (Ni-Cr-Co-Mo) is considered as one of leading candidates for this application due to its excellent thermal stability and strengths in anticipated operating conditions. On the basis of current ASME code requirements, sixty sheets of this alloy are prepared for diffusion welding, which is the key technology to have a reliable compact heat exchanger. Optical microscopic analysis show that there are no cracks, incomplete bond, and porosity at/near the interface of diffusion weldment, but Cr-rich carbides and Al-rich oxides are identified through high resolution electron microscopic analysis. In high-temperature tensile testing, superior yield strengths of the diffusion weldment compared to the code requirement are obtained up to 1223 K ($950^{\circ}C$). However, both tensile strength and ductility drop rapidly at higher temperature due to the insufficient grain boundary migration across the interface of diffusion weldment. Best fit curves for minimum yield strength and average tensile strength are drawn from the experimental tensile results of this study.

마할라노비스 거리를 이용한 압력용기 용접부 용접성 평가에 관한 연구 (A Study Evaluating Welding Quality in Pressure Vessel Using Mahalanobis Distance)

  • 김일수;이종표;이지혜;정성명;김영수;;박민호
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.22-28
    • /
    • 2013
  • Robotic GMA (Gas Metal Arc) welding process is one of widely acceptable metal joining process. The heat and mass inputs are coupled and transferred by the weld arc to the molten weld pool and by the molten metal that is being transferred to the weld pool. The amount and distribution of the input energy are basically controlled by the obvious and careful choices of welding process parameters in order to accomplish the optimal bead geometry and the desired quality of the weldment. To make effective use of automated and robotic GMA welding, it is imperative to predict online faults for bead geometry and welding quality with respect to welding parameters, applicable to all welding positions and covering a wide range of material thickness. MD (Mahalanobis Distance) technique was employed for investigating and modeling the GMA welding process and significance test techniques were applied for the interpretation of the experimental data. To successfully accomplish this objective, two sets of experiment were performed with different welding parameters; the welded samples from SM 490A steel flats. First, a set of weldments without any faults were generated in a number of repeated sessions in order to be used as references. The experimental results of current and voltage waveforms were used to predict the magnitude of bead geometry and welding quality, and to establish the relationships between weld process parameters and online welding faults. Statistical models developed from experimental results which can be used to quantify the welding quality with respect to process parameters in order to achieve the desired bead geometry based on weld quality criteria.