• Title/Summary/Keyword: gas generator

Search Result 757, Processing Time 0.023 seconds

Start-up Analysis and Commissioning Test of LCI System for 183MW Large Synchronous Machine (183MW 대용량 동기기 구동 LCI 시스템 기동운전 분석 및 시험)

  • Ryu, Hoseon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.626-631
    • /
    • 2013
  • Gas turbine systems are applied extensively in energy supplies to cover peak load requirements. The gas turboset must be accelerated by starting device up to 60%~80% of rated speed to ignite the gas turbine. Recently, the most favorable and economical starting device is the LCI(Load Commutated Inverter). The LCI runs up the gas turboset by feeding the generator as a synchronous motor. In this paper, we discuss in detail the driving principles and features of 183MW gas turbine system. During field application of LCI system, many tests have been conducted and the results were described in this paper. The test results will be considered as the important resources for development in future.

Development of welding machine using Hydrogen-Oxygen-Gas (수산화가스 에너지를 이용한 용접시스템 개발)

  • Lee Y. K.;Jeong B. H.;Yoon Y. S.;Mok H. S.;Choe G. H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.77-80
    • /
    • 2003
  • As rapid growth of energy demand in line with modern society's industrialization led to environmental pollution by fossil fuels, there are more and more interest and international research on energization of water, which is clean energy and comprising $70\%$ of earth. In offshore countries, the water is commercially used already and water has very attractive characteristics in terms of economy and efficiency compared to the existing gas welder. Brown Gas welder does not produce $CO_2$ from combustion of Hydrogen-Oxygen-Gas, which was gained by electrolysis of water, In this paper, the result from operating characteristic improvement of Gas Generator and Current-Controlled converter is to be considered into design in electrode, source/ controller, standized into level of whole system design base.

  • PDF

Feasibility Study on Design of Thrust Bearing for Micro Gas Turbine Generator (초소형 가스 터빈 제너레이터용 스러스트 베어링의 설계 및 타당성에 관한 연구)

  • 이용복;곽현덕;김창호;장건희
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.467-475
    • /
    • 2001
  • Feasibility study of gas-lubricated bearing in micro gas turbine was performed. Based on Reynolds equation, finite difference method with coupled boundary was developed to analyze bearing characteristics, such as load capacity, mass flow rates and stiffness. By the bearing force and mass flow rates analysis with the variation of supply pressure, bearing clearance and capillary radius, acceptable range of design parameters were suggested in terms of load capacity and stiffness of bearings. Additionally, coupled boundary effect on pressure distribution was investigated and it is stated that coupling could reduce an excitation force due to narrow pressure distribution.

Feasibility Study on Design of Thrust Bearing for Micro Gas Turbine/Generator (초소형 가스 터빈/제너레이터용 스러스트 베어링의 설계 및 타당성에 관한 연구)

  • 곽현덕;이용복;김창호;장건희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.273-281
    • /
    • 2001
  • Feasibility study of gas-lubricated bearing in micro gas turbine was performed. Based on Reynolds equation, finite difference method with coupled boundary was developed to analyze bearing characteristics, such as load-carrying capacity, mass flow rates and stiffness. By the bearing force and mass flow rates analysis with the variation of supply pressure, bearing clearance and capillary radius, acceptable range of design parameters were suggested in terms of load capacity and stiffness of bearings. Additionally, coupled boundary effect on pressure distribution was investigated and it is stated that coupling could reduce all excitation force due to narrow pressure distribution.

  • PDF

Performance Characteristics Analysis of Gas Turbine-Pressurized SOFC Hybrid Systems (가스터빈-가압형 SOFC 하이브리드 시스템의 성능특성 해석)

  • 양원준;김동섭;김재환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.615-622
    • /
    • 2004
  • Recently, the hybrid system combining fuel cell and gas turbine has drawn much attention owing to its high efficiency and ultra low emission. It is now on the verge of world wide development and various system configurations have been proposed. A national project funded by Korean government has also been initiated to develop a pressurized hybrid system. This work aims at presenting design performance analysis for various possible system configurations as an initial step for the system development. Study focuses are given to major design options including the power ratio between gas turbine and fuel cell, reforming method (internal or external), reforming heat source (reforming burner, cathode hot air, fuel cell heat release) and steam supply method for reformer (anode gas recirculation, external steam generator). A wide variation in performance among different configurations has been predicted.

A Study on Design of the Linear Generator in the Double Acting Stirling Engine (양방향 스털링엔진의 선형발전기 설계에 관한 연구)

  • PARK, SEONGJE;KO, JUNSEOK;HONG, YONGJU;KIM, HYOBONG;YEOM, HANKIL;IN, SEHWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.638-644
    • /
    • 2015
  • This paper describes the continuing effort to analysis and design on dynamic and electrical behavior of gamma-type free piston Stirling engine/generator with dual-opposed linear generator for domestic micro-CHP (Combined Heat and Power) system. The double acting Stirling engine/generator has one displacer and two power piston which are supported by flexure springs. Two power pistons oscillate with symmetric sinusoidal displacement and are connected with moving magnet type linear generators for power generation. To operate Stirling engine/generator, combustion heat of natural gas is supplied to hot-end and heat is rejected from cold-end by cooling water. The temperature difference across the displacer induces the oscillating motion, and it can be explained with mass-spring vibration system. The purpose of this paper is to describe the design process of linear generator for the double acting free-piston Stirling engine.

Modeling of a Compressed Air Energy Electrification by Using Induction Generator Based on Field Oriented Control Principle

  • Vongmanee, Varin;Monyakul, Veerapol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1511-1519
    • /
    • 2014
  • The objective of this paper is to propose a modelling of a small compressed air energy storage system, which drives an induction generator based on a field-oriented control (FOC) principle for a renewable power generation. The proposed system is a hybrid technology of energy storage and electrification, which is developed to use as a small scale of renewable energy power plant. The energy will be transferred from the renewable energy resource to the compressed air energy by reciprocating air compressor to be stored in a pressurized vessel. The energy storage system uses a small compressed air energy storage system, developed as a small unit and installed above ground to avoid site limitation as same as the conventional CAES does. Therefore, it is suitable to be placed at any location. The system is operated in low pressure not more than 15 bar, so, it easy to available component in country and inexpensive. The power generation uses a variable speed induction generator (IG). The relationship of pressure and air flow of the compressed air, which varies continuously during the discharge of compressed air to drive the generator, is considered as a control command. As a result, the generator generates power in wide speed range. Unlike the conventional CAES that used gas turbine, this system does not have any combustion units. Thus, the system does not burn fuel and exhaust pollution. This paper expresses the modelling, thermodynamic analysis simulation and experiment to obtain the characteristic and performance of a new concept of a small compressed air energy storage power plant, which can be helpful in system designing of renewable energy electrification. The system was tested under a range of expansion pressure ratios in order to determine its characteristics and performance. The efficiency of expansion air of 49.34% is calculated, while the efficiency of generator of 60.85% is examined. The overall efficiency of system of approximately 30% is also investigated.

Characteristic of Hydrogen-oxygen Mixed Gas Power Conversion System (혼합수소발생기용 전력변환장치의 특성)

  • Mun, Sang-Pil;Lee, Hae-Su;Nakaoka, Mutsuo;Jeong, Jang-Geun;Kim, Chang-Il;Jo, Gil-Je;Kim, Sang-Don
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.323-326
    • /
    • 2007
  • In this paper, the basic experiment, electrolytic cell design and basic manufacturing have been made to interpret the characteristics of Hydrogen-Oxygen-Gas-Generator. As for the detailed matters, the data research on basic technology on Hydrogen-Oxygen-Gas and analysis on characteristics of Hydrogen-Oxygen-Gas from basic experiment. Also the experiment of characteristics and comparative evaluation between constant current source using SCR converter from existing method and constant current source using new phase shift PWM control method converter. As results when it has injected constant DC current, we has compared Gas quantities by variable ripple frequencies using phase shift PWM control method converter. Therefore, in linear region, it has not different Gas quantities by constant DC current and by phase shift PWM control method converter. Also, it has increased Gas quantities wilder linear region when put ripple frequency at saturation region. Through, Gas quantities and input rower, it has acquired higher input power per Gas quantities at put pulse current. Therefore, when designing converter or inverter for electrolysis, which has ripple current.

  • PDF

Testing a Commercial Gas Engine using Synthetic Biogas (합성 바이오가스를 이용한 상용 가스엔진 발전기의 구동 특성)

  • Shim, Jae-Hoon;Hong, Seong-Gu;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.592-597
    • /
    • 2005
  • Biogas is widely accepted as one of renewable energy. Raw biogas can be used in internal combustion engines either spark ignition or diesel engines. Since the gas has relatively low calorific values, engine power also is lower than rated power values. Modified engines or biogas-specific engines have been utilized in order to increase efficiency. Recently, gas engine/generators are provided for various purposes. They are mostly for LPG or natural gas. When biogas is fueled to the gas engines, de-rating is inevitable due to its lower calorific values. Meanwhile, massively produced commercial gas engines are more competitive in terms of initial investment for engines, compared to biogas-specific engines. Then, the characteristics of the commercial engine and power generation should be understood for better operation. A 5kW gas engine/generator(natural gas) was tested for determining an allowable maximum concentration of $CO_2$ in synthetic biogas, with respect to engine stating, power generation. Experimental results indicated that about 65% of methane concentration is required to start the gas engine. At this condition, the power generated was about 3 kW. It is about 60% of the nominal power, which is similar to the ratio of calorific values.

  • PDF

A Study on the Low-energy Large-aperture Electron Beam Generator (저에너지 대면적 전자빔 발생장치 개발에 관한 연구)

  • Jo, Ju-Hyeon;Choe, Yeong-Uk;Lee, Hong-Sik;Im, Geun-Hui;U, Seong-Hun;Lee, Gwang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.12
    • /
    • pp.785-790
    • /
    • 1999
  • This research has been carried out to develop a low-energy large-aperture pulsed electron beam generator (LELA), 200keV 1A, for industrial applications. One of the most important feature of this electron beam generator is large electron beam cross section of $190cm^2$. Low energy electron beam generators have been used for water cleaning, flue gas cleaning, and pasteurization, etc. In these applications the cross sectionof the e-beam is related to reaction efficiency. Another important feature of this LELA EB generator is easy maintenance because of its simple structure and relatively low vacuum operation compared to the conventional EB generators. The conventional EB generators need to be scanned because the small cross section thermal electron emitters are used in the conventional EB generators which have small EB cross section. In this research, we use the secondary electrons generated by ion bombardment on the HV cathode surface as a electron source. Therefore we can make any shape of EB cross section without scanning.

  • PDF