• Title/Summary/Keyword: gas flow meter

Search Result 116, Processing Time 0.021 seconds

Development of an Ultrasonic Gas Flow Meter Using Transit Time Difference (전달 시간차 방식 초음파 가스 유량계)

  • 박상국;황원호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.707-713
    • /
    • 2003
  • We investigate the ultrasonic gas flow meter for the measurement of gas volume quantity, which passing through pipe, using the transit time difference method. We have designed a receiving system of an ultrasonic signal and hardware system of a flow meter Also, we have designed an experimental system for the characteristic test and calibration of a gas flow meter system. We have developed an ultrasonic gas flow meter, which has a measurement uncertainty within $\pm$ 1.7 %. For the test, we have compared our system with a difference pressure type flow meter for a few months in the real field. Through the test, we have confirmed that our system have a good reliability and durability. Also, we have confirmed that our system follows very well the variation of gas volume quantity, which was measured by a difference pressure type flow meter.

A Comparison of Accuracy Between a Turbine and an Orifice Meter in the Field (현장여건에 따른 터빈 유량계와 오리피스 유량계의 정확도 비교)

  • An, Seung-Hee;Her, Jae-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.97-105
    • /
    • 1999
  • Orifice flow meters are frequently used for measuring gas flow in gas industry. However, to insure the accuracy of the measurement, a certain length of the meter run at the upstream of the flow meter is required. The objective of this study is to analyze flow measurement errors of the orifice flow meter quantitatively for shorter lengths of the meter runs than those suggested in the standard manuals with variation of diameter ratio( $\beta$ ratio) and flow rate. The test results showed that the flow measurement errors of the orifice meter were inversely proportional to the diameter ratio. In other words, when the diameter ratio is 0.3 and 0.7, the measurement error is $-7.3\%$ and $-3.5\%$, respectively. the main reason of the measurement error is due to the swirl effect from the configuration of the meter run at the upstream of the flow meter. In case the length of the meter run is shorter than that suggested in the standard manuals, the swirl effect is not removed completely and it affects the flow meter's performance. As mentioned above, the less the pipe diameter ratio, the more the flow measurement error. It means that the swirl effect on the orifice meter increases as the $\beta$ ratio decreases.

  • PDF

A Study on Flow Rate Characteristics of a Triangular Separate Bar Differential Pressure Flow Meter according to the Variation of Gas Flow Temperature (유동 가스 온도 변화에 따른 삼각 분리 막대형 차압 유량계 유량 특성에 관한 연구)

  • Kim, Kwang-Il;Yoo, Won-Yuel;Lee, Choong-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.89-94
    • /
    • 2008
  • Differential pressure flow meters which have a shape of triangular separate bar(TSB) were tested for investigating the flow rate characteristics of the flow meters with varying the temperature of the gas flow. Three kinds of the triangular separate bar flow meters whose aerodynamic angles are different one another are used. The mass flow rate of the flow meters are evaluated using a non-dimensional parameter which includes the gas temperature, exhaust gas pressure and differential pressure at the flow meters, and atmospheric pressure. A burner system which is similar to gas turbine was used for raising the gas flow temperature. The burner system was operated with varying the air/fuel ratio by controlling both the fuel injection rate from the fuel nozzle and air flow rate from a blower. An empirical correlation between the mass flow rate at the TSB flow meter and the non-dimensional parameter was obtained. The empirical correlation showed linear relationship between the mass flow rate and the non-dimensional parameter H. Also, the mass flow rate characteristics at the TSB flow meter was affected by the gas temperature.

A Study on Flow Characteristics of a Separate Triangular Bar Differential Pressure Flow Meter for Measuring Exhaust Flow Rate of Diesel Engine (디젤엔진 배기 가스 유량 측정용 삼각 분리 막대형 차압유량계 유량 특성 연구)

  • Lee, Choong-Hoon;Kim, Kwang-Il;Kim, Min-Chang;Park, Dong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.563-568
    • /
    • 2007
  • A separate triangular bar type differential pressure flow meter was developed for measuring exhaust gas flow rate from Diesel engine. Three kinds of the separate triangular bar flow meters whose aerodynamic angles are different one another are made and evaluated, respectively. The experimental results show that an aerodynamic shape has a effect on the pressure difference between upstream and downstream at the flow meter, that is, the thinner the shape of the separate triangular bar flow meter is, the smaller the pressure difference at the flow meter is. The separate triangular bar type flow meter was calibrated at both cold and high temperature of the gas flow. A burner system was designed for raising the gas temperature and it was well operated in controlling the gas temperature. An empirical correlation between mass flow rate and differential pressure at the separate triangular bar flow meter was obtained and the empirical correlation was also corrected by the gas temperature.

A Study of Straight Pipe Length and Straightener in Orifice Meter Turbine Meter (오리피스 유량계와 터빈 유량계의 직관부길이와 유동안정기에 관한 연구)

  • Her, Jae-Young;An, Seung-Hee;Lee, Kang-Jin;Lee, Seung-Jun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.265-271
    • /
    • 2000
  • Orifice meters and turbine meters are frequently used for measuring gas flow in gas industry. However, to insure the accuracy of the measurement, a certain length of the meter run at the upstream of the flow meter is required. The objective of this study is to analyze flow measurement errors of the orifice meter quantitatively for shorter lengths of the meter runs than those suggested in the standard manuals with variation of diameter ratio( $\beta$ ratio) and flow rate and also to analyze flow measurement errors of the turbine meter with and without straightener. The test results showed that the flow measurement errors of the orifice meter were inversely proportional to the diameter ratio. In other words, when the diameter ratio is 0.3 and 0.7, the measurement error is $-7.3\%$ and $-3.5\%$, respectively. the main reason of the measurement error is due to the swirl effect from the configuration of the meter run at the upstream of the flow meter. In case the length of the meter run is shorter than that suggested In the standard, the swirl effect is not removed completely and it affects the flow meter's performance. As mentioned above, the less the pipe diameter ratio, the mon the flow measurement error. It means that the swirl effect on the orifice meter increases as the $\beta$ ratio decreases.

  • PDF

A Pipeline Network Analysis on the Source and the Relation with Pipe Diameter of the Flow Hunting in a Orifice Meter (오리피스 유량계의 유동헌팅 원인과 배관경과의 상관관계에 대한 배관망해석 연구)

  • Shin, Chang-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.54-59
    • /
    • 2011
  • Generally, the flow hunting is observed in almost all of the orifice meters but the intensity of the flow hunting is different at each metering system. In order to investigate the relations between pipe diameter and the flow instability or the flow hunting in a real metering system, a one-dimensional pipeline network model was built and analyzed for the examination of flow characteristics and relations to the flow hunting, changing diameters of the meter and the pipes before and after the meter. Finally, the effects of pressuredifference variation and flow hunting following to the variations of the diameters of the meter and the pipes before and after the meter were investigated and the relations were examined as well.

Density Measurement Comparisons of Specific Gravity Meter and Gas Chromatography in the Field (실제조건에서 기준 밀도계와 가스 분석기에 의한 밀도 측정 결과 비교)

  • Lee, Kang-Jin;Her, Jae-Young;Ha, Young-Cheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.90-96
    • /
    • 1999
  • In contracts for sales of natural gas between sellers and buyers, it is not suncient to only measure a volumetric quantity of gas in flowing conditions in metering station. Therefore the measured volumetric quantity must be converted to that of reference conditions. The density of the natural gas required in such a calculation can be measured directly or estimated from the equation of sate or any other experimental methods. The specific gravity meter is the apparatus used to measure the density of fluids under the reference conditions and it can be widely used in industrial areas, especially in massive flow rate natural gas industry. This study has been carried out in an attempt to improve measurement accuracy of natural gas flow rate calculation, providing the adequate installation and proper operation conditions of specific gravity meter. The test results are 1) the density measurement errors in case of using methane and standard gas as calibration gases are smaller than using methane and nitrogen gas, 2) the periodical calibration to maintain accurate density measurements is essential, and 3) the specific gravity meter is sensitive to changes of environmental conditions, especially environmental temperature surrounding the specific gravity meter.

  • PDF

A Study on Flow Rate Characteristics of a $Annubar^{(R)}$ Type Differential Pressure Flow Meter with a Shape Improvement ($Annubar^{(R)}$형 차압유량계 형상 개선에 따른 유량 특성 연구)

  • Oh, Dae-San;Lee, Choong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.204-210
    • /
    • 2010
  • The inner structure of the triangular separate bar (TSB) was improved to enhance the productivity of the TSB flow meter by simplifying the machining process for making the flow meter. The cross section of upstream and downstream pressure chamber in the TSB was changed from triangle to circle, which make it possible to substitute the wire cutting by drilling in the process of machining the pressure chamber. The flow rate characteristics of the flow meters was calibrated with a laminar flow meter. Six kinds of flow meters whose diameters of pressure tap for measuring pressure of both upsteam and downstream pressure chamber were different one another were made. The effects of the pressure tap diameter on the flow rate characteristics of the TSB flow meter was little. The mass flow rate characteristics of the flow meters with increasing a non-dimensional parameter which includes the gas temperature, exhaust gas pressure and differential pressure at the flow meters and atmospheric pressure shows nearly linear relationship with a correlation coefficient of R=0.998.

A CFD Analysis of Gas Flow through an Ultrasonic Meter (초음파 유량계를 통하는 기체유동의 CFD 해석)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Lee, Ho-Joon;Hwang, Shang-Yoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.998-1003
    • /
    • 2003
  • Ultrasonic flow metering(UFM) technology is being received much attention from a variety of industrial fields to exactly measure the flow rate. The UFM has much advantage over other conventional flow meter systems, since it has no moving parts, and offers good accuracy and reliability without giving any disturbances to measure the flow rate, thereby not causing pressure losses in the flow fields. In the present study, 3-dimensional, unsteady, compressible Navier-Stokes equations are solved by a finite volume scheme, based upon the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral method for time derivatives. In order to simulate multi-path ultrasonic flow meter, an excited pressure signal is applied to three different locations upstream, and the pressure signals are received at three different locations downstream. The mean flow velocities are calculated by the time difference between upstream and downstream propagating pressure signals. The obtained results show that the present CFD method simulates successfully ultrasonic meter gas flow and the mean velocity measured along the chord near the wall is considerably influenced by the boundary layers.

  • PDF

A Study on Effects of Temperature Difference between the Inside and Outside the Meter-Run on Natural Gas Flow Measurement Errors (천연가스 계량배관 내$\cdot$외의 온도차가 계량오차에 미치는 영향에 관한 연구)

  • Ha Youngcheol;Lee Chulgu;Chang Seungyong;Lee Kangjin
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.83-89
    • /
    • 1998
  • Experiments had been conducted Qualitatively regarding flow measurement errors of orifice flowmeter due to temperature difference between the inside and outside the natural gas meter-run in case of no pipe insulations. The primary factors considered in this study are fluid velocity and surrounding temperature. In addition, a portion of thermal radiation due to the sun was involved as a factor. The results showed that the considerable errors were not detected even in conditions of low flow rates and large temperature difference between the inside and outside the meter-run.

  • PDF