• 제목/요약/키워드: gas discharge tube

검색결과 90건 처리시간 0.029초

Pilot 플라즈마 반응기를 이용한 하수 중 미생물의 불활성화 (Inactivation of Microorganisms in Sewage Using a Pilot Plasma Reactor)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제39권3호
    • /
    • pp.289-299
    • /
    • 2013
  • Objectives: For the field application of the dielectric barrier discharge plasma reactor, scale-up of the plasma reactor is needed. This study investigated the possibility of inactivation of microorganisms in sewage using pilot multi-plasma reactor. We also considered the possibility of degradation of total organic carbon (TOC) and nonbiodegradable matter ($UV_{254}$) in sewage. Methods: The pilot plasma reactor consists of plasma reactor with three plasma modules (discharge electrode and quartz dielectric tube), liquid-gas mixer, high voltage transformers, gas supply equipment and a liquid circulation system. In order to determine the operating conditions of the pilot plasma reactor, we performed experiments on the operation parameters such as gas and liquid flow rate and electric discharge voltage. Results: The experimental results showed that optimum operation conditions for the pilot plasma reactor in batch experiments were 1 L/min air flow rate), 4 L/min liquid circulation rate, and 13 kV electric discharge voltage, respectively. The main operation factor of the pilot plasma process was the high voltage. In continuous operation of the air plasma process, residual microorganisms, $UV_{254}$ absorbance and TOC removal rate at optimal condition of 13 kV were $10^{2.24}$ CFU/mL, 56.5% and 8.6%, respectively, while in oxygen plasma process at 10 kV, residual microorganisms, $UV_{254}$ absorbance and TOC removal rate at optimal conditions were $10^{1.0}$ CFU/mL, 73.3% and 24.4%, respectively. Electric power was increased exponentially with the increase in high voltage ($R^2$ = 0.9964). Electric power = $0.0492{\times}\exp^{(0.6027{\times}lectric\;discharge\;voltage)}$ Conclusions: Inactivation of microorganisms in sewage effluent using the pilot plasma process was done. The performance of oxygen plasma process was superior to air plasma process. The power consumption of oxygen plasma process was less than that of air plasma process. However, it was considered that the final evaluation of air and oxygen plasma must be evaluated by considering low power consumption, high process performance, operating costs and facility expenses of an oxygen generator.

A Design Technology of Ceramic Tube for High Efficiency Ozone

  • Cho, Kook-Hee;Kim, Young-Bae;Lee, Dong-Hoon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권3호
    • /
    • pp.77-80
    • /
    • 2003
  • An innovative ozonizer has been developed using a high frequency, surface discharge and a high purity Ti-Si-AI ceramic catalyst as a dielectric component. Using a type of thin film, a thin cylindrical compound ceramic catalyst layer was adhered to the outside surface of its inner electrode. An alternating current (AC) exciting voltage with frequencies from 0.6 KHz to 1.0 KHz and peak-to-peak voltages of 4-6 ㎸ was applied between the electrodes to produce a stable high-frequency silent discharge. A substantial reduction of the exciting voltage was also enabled by means of a thin Ti-Si-Al ceramic catalyst tube. As a result, the ozonizer can effortlessly obtain the required ozone concentration (50-60 g/$m^2$ for oxygen) and high ozone efficiency consumption power (180 g/kWh for oxygen) with-out the assistance of any particular methods. For purposes of this experiment, oxygen gas temperature was set at 2$0^{\circ}C$, with an inner reactor pressure of 1.6 atm at 600 Hz and a flow rate of 2 l/min.

Experimental Investigation of Ion Mobility Measurements in Oxygen under Different Gas Pressures

  • Liu, Yun-Peng;Huang, Shi-long
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.852-857
    • /
    • 2017
  • In this paper, measurements of ion mobility were performed in oxygen at gas pressures of 44.52 - 101.19 kPa using the drift tube method. Over this pressure range, mobility values were within the limits of 1.796 to $3.821cm^2{\cdot}V^{-1}{\cdot}s^{-1}$ were determined and ion mobility shown to decrease non-linearly with increasing gas pressure towards a certain level of saturation. Ion mobility measured in air was lower than that measured in oxygen at the same gas pressure. Finally, a parameter correction method for calibrating the relationship between the ion mobility and gas pressure in oxygen was proposed.

MICOWAVE PLASMA BURNER

  • Hong, Yong-Cheol;Shin, Dong-Hun;Lee, Sang-Ju;Jeon, Hyung-Won;Lho, Taihyeop;Lee, Bong-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.95-95
    • /
    • 2010
  • An apparatus for generating flames and more particularly the microwave plasma burner for generating high-temperature large-volume plasma flame was presented. The plasma burner was composed of micvrowave transmission lines, a field applicator, discharge tube, coal and gas supply systems, and a reactor. The plasma burner is operated by injecting coal powders into a 2.45 GHz microwave plasma torch and by mixing the resultant gaseous hydrogen and carbon compounds with plasma-forming gas. We in this work used air, oxygen, steam, and their mixtures as a discharge gas or oxidant gas. The microwave plasma torch can instantaneously vaporize and decompose the hydrogen and carbon containing fuels. It was observed that the flame volume of the burner was more than 50 times that of the torch plasma. The preliminary experiments were carried out by measuring the temperature profiles of flames along the radial and axial directions. We also investigated the characteristics for coal combustion and gasification by analyzing the byproducts from the exit of reactor. As expected, various byproducts such as hydrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, etc. were detected. It is expected that such burner cab be applied to coal gasification, hydrocarbon reforming, industrial boiler of power plants, etc.

  • PDF

Measurement of Electron Temperature and Number Density and Their Effects on Reactive Species Formation in a DC Underwater Capillary Discharge

  • Ahmed, Muhammad Waqar;Rahman, Md. Shahinur;Choi, Sooseok;Shaislamov, Ulugbek;Yang, Jong-Keun;Suresh, Rai;Lee, Heon-Ju
    • Applied Science and Convergence Technology
    • /
    • 제26권5호
    • /
    • pp.118-128
    • /
    • 2017
  • The scope of this work is to determine and compare the effect of electron temperature ($T_e$) and number density ($N_e$) on the yield rate and concentration of reactive chemical species ($^{\bullet}OH$, $H_2O_2$ and $O_3$) in an argon, air and oxygen injected negative DC (0-4 kV) capillary discharge with water flow(0.1 L/min). The discharge was created between tungsten pin-to pin electrodes (${\Phi}=0.5mm$) separated by a variable distance (1-2 mm) in a quartz capillary tube (2 mm inner diameter, 4 mm outer diameter), with various gas injection rates (100-800 sccm). Optical emission spectroscopy (OES) of the hydrogen Balmer lines was carried out to investigate the line shapes and intensities as functions of the discharge parameters such as the type of gas, gas injection rate and inter electrode gap distances. The intensity ratio method was used to calculate $T_e$ and Stark broadening of Balmer ${\beta}$ lines was adopted to determine $N_e$. The effects of $T_e$ and $N_e$ on the reactive chemical species formation were evaluated and presented. The enhancement in yield rate of reactive chemical species was revealed at the higher electron temperature, higher gas injection rates, higher discharge power and larger inter-electrode gap. The discharge with oxygen injection was the most effective one for increasing the reactive chemical species concentration. The formation of reactive chemical species was shown more directly related to $T_e$ than $N_e$ in a flowing water gas injected negative DC capillary discharge.

불평등전극계에서 뇌임펄스전압에 대한 $N_2$기체의 절연파괴 특성 (The breakdown characteristics of $N_2$ gas with lightning impulse voltage in the non-uniform electrode)

  • 이복희;이봉;조정현
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.301-304
    • /
    • 2008
  • This paper presents the experimental results on breakdown characteristics in $N_2$ gas under non-uniform electric fields caused by both the positive and negative lightning impulse voltages. $N_2$ gas have an advantage of eco-friendly and cost reduction, and safety aspects. In order to analyze the impulse pre-breakdown processes in $N_2$ gas, we carried out measurements and observations of the impulse breakdown voltages, pre-breakdown current and luminous signals. They were measured by a voltage divider, a shunt and a photo-multiplier tube, respectively. Additionally, the characteristics of discharge channels were observed by high speed cameras. The breakdown voltages in the positive polarity was lower than those in the negative polarity.

  • PDF

광속법을 이용한 기체의 전이계수 측정 (Measurement of the Ionization Coefficient in Gases by the Luminous-flux Method)

  • 백용현;하성철;이복희;김희택;김정섭
    • 대한전기학회논문지
    • /
    • 제34권7호
    • /
    • pp.289-296
    • /
    • 1985
  • The Townsend primary ionization coefficient a was measured by the luminous-flux method using the fact that the intensity of radiant light is proportional to electron density in the townsend discharge domain. The ranges of measurements were 15for He gas and 10

  • PDF

구동특성에 따른 세라믹 메탈 할라이드 램프의 전기적 특성 및 방전현상에 관한 연구 (Electrical Characteristics and Discharge Condition of Ceramic Metal Halide Lamp with Operating Property)

  • 장혁진;김남군;양종경;김우영;박형준;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.388-389
    • /
    • 2009
  • The use of arc tubes made of ceramic material further enhanced some of the metal halide lamp's properties. These properties translate into higher efficacy with better color rendering, stable color through lamp long life. Recently, due to an increase in the application of the ceramic metal-halide lamp, the study for the property etc. according to Ballast's driving scheme and the study for arc tube material, optimization of gas and so on are being proceeded to improve the property of the lamp. Especially, to control ceramic metal-halide lamp, the vigorous study and practical use with respect to Electronic Ballast, which has been improved in the disadvantages of the conventional Magnetic Ballast are made. In this paper, Electrical characteristics and gas insulation destroy time are analyzed by comparing magnetic ballast with electronic ballast.

  • PDF

수중 유전체장벽방전 플라즈마를 이용한 아조 염색폐수 색도제거 (Decolorization of Azo Dyeing Wastewater Using Underwater Dielectric Barrier Discharge Plasma)

  • 조진오;이상백;목영선
    • 공업화학
    • /
    • 제24권5호
    • /
    • pp.544-550
    • /
    • 2013
  • 본 연구에서는 소수성 다공질 세라믹관이 결합된 수중 유전체장벽방전 플라즈마 반응기를 이용하여 모사 염색폐수의 색도저감을 조사하였다. 플라즈마에 의해 생성되는 활성성분들은 수명이 매우 짧으므로 생성되는 즉시 물과 접촉시켜야 효과적인 폐수처리가 가능하며, 또한 반응속도를 증가시키기 위해서는 기/액 접촉면적이 커야 하는데, 본 연구의 반응기는 두 가지 목적을 동시에 이룰 수 있다. 아조 염료로는 amaranth, 그리고 플라즈마 생성을 위한 기체로는 공기가 사용되었으며, 방전전력, 기체 유량, 용존 음이온, 염료 초기농도 등 색도 제거에 미치는 다양한 변수의 영향이 평가되었다. 기체유량이 $1.5Lmin^{-1}$일 때, 플라즈마 기체가 염색폐수와 가장 효과적으로 접촉하였으며, 색도 제거가 가장 빠르게 일어났다. 염료 초기농도 $40.2{\mu}molL^{-1}$ (폐수부피 : 0.8 L), 방전전력 3.37 W의 조건에서 색도를 99% 이상 제거하는데 약 25 min이 소요되었다. 그밖에 염료의 초기농도가 낮을수록, 방전전력이 높을수록 색도 제거 속도가 증가하는 것으로 나타났다. 염소이온이 존재할 경우 색도 제거 속도가 빨라졌으나, 질산이온은 색도 제거 속도에 영향을 주지 않았다.

종방향 여기 방식과 표면방전에 의한 질소레이저의 동작 특성 (Operational Characteristics of a Nitrogen Laser with Sliding Discharge and Longitudinal Excitation)

  • 이봉연
    • 한국광학회지
    • /
    • 제16권5호
    • /
    • pp.450-455
    • /
    • 2005
  • 본 논문에서는 기존의 TE(transverse excitation) 방식과 달리 LE(longitudinal excitation) 방식을 사용하여 유전체 표면을 따라 발생하는 미끄럼 방전에 의해서도 질소레이저 발진이 가능함을 보였다. 이는 방전여기 방식인 엑시머 레이저 등의 기체 레이저에서도 미끄럼 방전을 이용한 레이저 발진이 가능함을 의미한다. 또한, 레이저빔의 형상이 공진기의 원둘레를 따라 발진이 되어 빔이 환 모양으로 출력이 됨을 보임에 따라 직사각형이나 타원형의 빔 등 폐곡선을 이루는 어떤 특정한 형태의 질소레이저 빔도 만들어 낼 수 있다는 가능성을 보였다. 레이저의 동작특성인 출력과 안정성은 TE 방식에 비해서도 뒤떨어지지 않는 다는 것을 알 수 있었으며, 공진기의 지름이 2배 증가하면 미끄럼 방전이 일어나는 표면이 2배, 체적은 4배 증가하여 그에 따른 방전간극과 유동률이 비례관계에 있음을 알 수 있었다.