• 제목/요약/키워드: gas diffusion

검색결과 1,043건 처리시간 0.032초

Study of Counter Diffusion in Isostatic Permeameters

  • Bianchi, F.;Pegoraro, M.;Zanderighi, L.
    • Korean Membrane Journal
    • /
    • 제3권1호
    • /
    • pp.39-50
    • /
    • 2001
  • The counter-diffusion of two gaseous substances permeating a polymeric membrane has been investigated both experimentally and theoretically. The aim of the study was to find mutual effects, if any, that could influence the permeability and diffusivity data. The experimental data were obtained with an isostatic permeameter operating at ambient pressure and 303 K: helium, nitrogen, carbon dioxide methane were used as permeating gas at different partial pressure; helium or nitrogen as equilibrating or carrier gas. No evident mutual effect of the counter-diffusing gas was observed. The theoretical analysis gave some insight into the phenomena and it was concluded that at near-atmospheric pressures, and in the absence of swelling phenomena no mutual interaction exists. On a theoretical basis any mutual interaction between diffusing and counter-diffusing gases could only occur: i) at high pressures , when the free movement of permeating gas molecules within the polymer is hindered by the counter-diffusing gas; ii) when a large part of the free volume fraction is occupied by the counter--diffusing gas; iii) swelling phenomena modify the structure and free volume fraction of the polymer.

  • PDF

저압식 진공 침탄(LPC) 열처리 공정 기술 개발 (Development of Process Technology for Low Pressure Vaccum Carburizing)

  • 동상근;양제복
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.231-237
    • /
    • 2004
  • Vacuum carburizing continues to gain acceptance as an alternative to atmosphere carburizing particularly in the car industry. The advantages of low-pressure carburization over atmospheric gas carburization is not only the creation of a surface entirely free of oxide and the environmentally friendly nature of these methods but also an improvement in deformation behaviour achieved by combining carburization with gas quenching, a reduction in batch times by increasing the carburization temperature, low gas and energy consumption and the prevention of soot to a large extent. In present study, an improved vacuum carburizing method is provided which is effective to deposit carbon in the surface of materials and to reduce cycle time. Also LPC process simulator was made to optimize to process controls parameters such as pulse/pause cycles of pressure pattern, temperature, carburizing time, diffusion time. The carburizing process was simulated by a diffusion calculation program, where as the model parameters are proposed with help the experimental results and allows the control of the carburizing process with good accordance to the practical results. Thus it can be concluded that LPC process control method based on the theoretical simulation and experimental datas appears to provide a reasonable tool for prototype LPC system.

  • PDF

마이크로 펄스 플라즈마 질화에 의해 생성된 금형 공구강의 표면층에 관한 연구 -공정 변수의 영향- (The Microstructures and Properties of Surface Layer on the Tool Steel Formed by Ion Nitriding -Effects of Process Parameter-)

  • 이재식;김한군;유용주
    • 열처리공학회지
    • /
    • 제14권1호
    • /
    • pp.8-16
    • /
    • 2001
  • The effects of gas composition, pressure, temperature and time on the case thickness, hardness and nitride formation in the surface of tool steels(STD11 and STD61) have been studied by micro-pulse plasma nitriding. External compound layer and internal diffusion layer and the diffusion layer were observed in the nitrided case of tool steels. The relative amounts and kind of phases formed in the nitrided case changed with the change of nitriding conditions. Generally, only nitride phases such as ${\gamma}(Fe_4N)$, ${\varepsilon}(Fe_{2-3}N)$, or $Cr_{1.75}V_{0.25}N_2$ phases were detected in the compound layer, while nitride and carbide phases such as ${\varepsilon}-nitride(Fe_{2-3}N)$, $(Cr,Fe)_{\gamma}C_3$ or $Fe_3C$ were detected in the diffusion layer by XRD analysis. The thickness of compound layer increased with the increase of nitrogen content in the gas composition. Maximum case depth was obtained at gas pressure of 200Pa.

  • PDF

내구성능저하된 기체확산층이 고분자전해질 연료전지의 과도응답성능에 미치는 영향 연구 (Study on Transient Response of a Unit Proton Exchange Membrane Fuel Cell with an Aged Gas Diffusion Layer)

  • 조준현;하태훈;박재만;오환영;민경덕;정지영;이은숙
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.76.2-76.2
    • /
    • 2010
  • The gas diffusion layer is the key component of the proton exchange membrane fuel cell because it directly affect to the mass transport mechanism and dynamic behavior of the cell. In this study, the effects of GDL aging on the transient response of the PEM fuel cell is systematically investigated using current step transient response analysis under different stoichiometric ratios and humidity conditions. With GDLs aged by the accelerated stress test, the effects of hydrophobicity and structural changes due to carbon loss in the GDL on the transient response of PEM fuel cells are determined. The degraded GDLs that had uneven hydrophobicity distributions cause local water flooding inside the GDL and induce lower and unstable voltage responses after load changes.

  • PDF

Electrochemical Immunosensor Using a Gas Diffusion Layer as an Immobilization Matrix

  • Kim, Yong-Tae;Oh, Kyu-Ha;Kim, Joo-Ho;Kang, Hee-Gyoo;Choi, Jin-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.1975-1979
    • /
    • 2011
  • The modification of a gas diffusion layer (GDL), a vital component in polymer electrolyte fuel cells, is described here for use in the electrochemical detection of antibody-antigen biosensors. Compared to other substrates (gold foil and graphite), mouse anti-rHBsAg monoclonal antibody immobilized on gold-coated GDL (G-GDL) detected analytes of goat anti-mouse IgG antibody-ALP using a relatively low potential (-0.0021 V vs. Ag/AgCl 3 M NaCl), indicating that undesired by-reactions during electrochemical sensing should be avoided with G-GDL. The dependency of the signal against the concentration of analytes was observed, demonstrating the possibility of quantitative electrochemical biosensors based on G-GDL substrates. When a sandwich method was employed, target antigens of rHBsAg with a concentration as low as 500 ng/mL were clearly measured. The detection limit of rHBsAg was significantly improved to 10 ng/mL when higher concentrations of the 4-aminophenylphosphate monosodium salt (APP) acting on substrates were used for generating a redox-active product. Additionally, it was shown that a BSA blocking layer was essential in improving the detection limit in the G-GDL biosensor.

알카라인 연료전지 가스확산층 내구성 향상을 위한 초발수 코팅 최적화 연구 (Study on the Optimization of Superhydrophobic Coating for the Durability of Gas Diffusion Layer in Alkaline Fuel Cells)

  • 김숭연;서민혜;엄성현
    • 공업화학
    • /
    • 제28권6호
    • /
    • pp.691-695
    • /
    • 2017
  • 본 연구에서는 알카라인 연료전지 환원극 가스확산층에 내열화학성이 우수한 초발수 성능을 부여하기 위하여 PDMS 코팅 공정을 최적화하였다. 성격이 상이한 두 개의 상용 가스확산층을 선택하였으며, 소재의 열적 안정성을 검토하여 코팅 온도를 최적화하고, PDMS 점도를 제어하여 코팅 균일성을 확보하고자 하였다. PDMS 전구체의 점도와 관계없이 $200^{\circ}C$ 부근에서 코팅하게 되면 모든 확산층 표면에서 높은 초발수 성능을 나타내었다. 가혹실험 조건에서 초발수 성능변화를 측정한 결과 1000 CS PDMS를 이용하여 28BC 가스확산층에 코팅한 경우가 가장 높은 내구성을 나타내었다.

암모니아 펄스 플라즈마를 이용한 원자층 증착된 질화텅스텐 확산방지막 특성 ([ $NH_3$ ] Pulse Plasma Treatment for Atomic Layer Deposition of W-N Diffusion Barrier)

  • 이창우
    • 마이크로전자및패키징학회지
    • /
    • 제11권4호
    • /
    • pp.29-35
    • /
    • 2004
  • 암모니아 펄스플라즈마를 이용하여 $WF_6$ 가스와 $NH_3$ 가스를 교대로 흘려줌으로써 Si 기판위에 질화텅스텐 확산방지막을 증착하였다. $WF_6$ 가스는 Si과 반응하여 표면침식이 과도히 발생하였으나 암모니아 ($NH_3$)가스를 펄스 플라즈마를 인가하여 $WF_6$와 같이 사용하면 Si 표면을 질화처리 함으로써 표면침식을 막아주며 질화텅스텐 박막을 쉽게 증착할 수 있었다. 그 이유는 암모니아 가스의 분해를 통한 Si 기판의 흡착을 용이하게 하여 질화텅스텐 박막 증착이 가능하기 때문이다. 이러한 증착 미케니즘과 암모니아 펄스 플라즈마 효과에 대하여 조사하였다.

  • PDF

불활성기체로 희석된 동축류 확산화염의 파일럿화염에 의한 안정화 (Stabilization of Inert-Gas-Diluted Co-Flow Diffusion Flame by a Pilot Flame)

  • 안태국;이원남;박선호
    • 한국연소학회지
    • /
    • 제20권4호
    • /
    • pp.19-25
    • /
    • 2015
  • An experimental study was conducted to find the effect of a pilot flame on the flammability of inert-gas-diluted methane and propane. The diffusion pilot flame was formed with propane at the innermost nozzle of a concentric triple co-flow burner. The main diffusion flame was formed with nitrogen-diluted methane or propane at the outermost nozzle of the burner. An air flow was located in-between. The results showed that the existence of the pilot flame helped stabilizing the main flame even at the flammability limit concentration of nitrogen-diluted fuel. The co-flow burner generated re-circulation zones and local variation of equivalence ratio depending on the flow rates of the reactants, which are known to help flame stabilization. Hot-wire experiments confirmed that both heating of the reactants and supplying of active chemical species by the pilot flame contributed to stabilization of the main flame. The results of this study would suggest a design concept for an efficient SVRU system that minimizes the emission of unburned hydrocarbon fuel from ship fuel tanks.

균열 아크릴 시편의 기체 확산계수와 균열폭의 관계 (Relationship between Crack Width and Gas Diffusion Coefficient of Cracked Acrylic Specimens)

  • 이도근;임민혁;신경준
    • 한국건설순환자원학회논문집
    • /
    • 제6권4호
    • /
    • pp.245-251
    • /
    • 2018
  • 최근 구조물의 유지관리의 중요성이 부각되면서 자기치유 콘크리트 기술 분야의 연구가 활발히 이루어지고 있다. 이에 반해서 자기치유 성능을 평가하기 위한 척도는 부족한 실정이다. 균열폭을 측정하기 위한 방법으로 시각적인 방법이 1차적으로 사용되고 있으나 시편 내부의 균열폭을 관찰하기가 어려우며, 비균질한 균열특성으로 인해 표면에 대한 국부적인 측정만 할 수 있는 단점이 있다. 균열에 대한 간접적인 평가 방법으로 투수실험이 널리 활용되고 있지만 물의 점성으로 인한 문제가 있으며, 또한 실험 중 시편내부 물질의 용출될 가능성이 존재한다. 본 연구에서는 기체확산 특성을 활용한 균열폭 평가 방법을 제안하고자 하였다. 아크릴로 이상화된 직선균열을 제작하여 균열폭, 두께에 따른 시편의 확산계수를 분석하였다. 실험결과를 통하여 균열폭과 확산계수는 선형관계에 있음을 보였고, 두께와 확산계수는 역수의 관계에 있음을 증명하였다.

How Supernovae Ejecta Is Transported In A Galaxy: DependenceOn Hydrodynamic Schemes In Numerical Simulations

  • Shin, Eun-jin;Kim, Ji-hoon
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.48.4-48.4
    • /
    • 2019
  • We studied the metal-distribution of isolated Milky-way mass galaxy using various hydrodynamic solvers and investigated the difference of the result between AMR and SPH codes. In particle-based codes, physical quantities like mass or metallicity defined in each particle are conserved unless being injected explicitly by the effect of the supernova, whereas in the Eulerian codes the diffusion is simply accomplished by hydro-equation. Therefore, without including explicit physics of diffusion on the SPH- codes, the metal mixing in the galaxy or CGM only can be accomplished by the direct motion of the particles, however, the standard-SPH codes depress the instability of the turbulent fluid mixing. In this work, we simulated under common initial conditions, common gas-physics like cooling-heating models, and star-formation feedback using ENZO(AMR) GIZMO and GADGET-2 codes. We additionally included a metal-diffusion algorithm on the SPH-codes, which follows the subgrid-turbulent mixing model investigated by Shen et al. (2010) and compared the effect of the metal-outflow on the halo region of the galaxy in different hydro-solvers. We also found that for the implementation of the diffusion scheme in the SPH-codes, the existence of a sufficient number of the gas-particles, which is the carrier of the metals, is necessary. So we tested a new initial condition for proper implementation of the diffusion scheme on the SPH simulations. By comparing the metal-contamination of the circumgalactic medium with different hydrodynamics models, we quantify the diffusion strength of AMR codes using diffusion parameterization of the SPH codes and also suggest the calibration solutions in the different behavior of codes in metal-outflow.

  • PDF