DOI QR코드

DOI QR Code

균열 아크릴 시편의 기체 확산계수와 균열폭의 관계

Relationship between Crack Width and Gas Diffusion Coefficient of Cracked Acrylic Specimens

  • Lee, Do-Keun (Department of Civil Engineering, Chung-nam University) ;
  • Lim, Min-Hyuk (Department of Civil Engineering, Chung-nam University) ;
  • Shin, Kyung-Jun (Department of Civil Engineering, Chung-nam University)
  • 투고 : 2018.09.27
  • 심사 : 2018.11.14
  • 발행 : 2018.12.30

초록

최근 구조물의 유지관리의 중요성이 부각되면서 자기치유 콘크리트 기술 분야의 연구가 활발히 이루어지고 있다. 이에 반해서 자기치유 성능을 평가하기 위한 척도는 부족한 실정이다. 균열폭을 측정하기 위한 방법으로 시각적인 방법이 1차적으로 사용되고 있으나 시편 내부의 균열폭을 관찰하기가 어려우며, 비균질한 균열특성으로 인해 표면에 대한 국부적인 측정만 할 수 있는 단점이 있다. 균열에 대한 간접적인 평가 방법으로 투수실험이 널리 활용되고 있지만 물의 점성으로 인한 문제가 있으며, 또한 실험 중 시편내부 물질의 용출될 가능성이 존재한다. 본 연구에서는 기체확산 특성을 활용한 균열폭 평가 방법을 제안하고자 하였다. 아크릴로 이상화된 직선균열을 제작하여 균열폭, 두께에 따른 시편의 확산계수를 분석하였다. 실험결과를 통하여 균열폭과 확산계수는 선형관계에 있음을 보였고, 두께와 확산계수는 역수의 관계에 있음을 증명하였다.

Recently, as the importance of structural maintenance has been increased, studies on self - healing concrete technology are being actively carried out. On the other hand, test for evaluating the self-healing performance is not standardized yet. Although visual test is used as a basic method for measuring crack widths, it is difficult to observe the crack width inside the specimen, and there is a disadvantage that only the local measurement of the surface can be measured due to the inhomogeneous cracking characteristics. Although permeability test has been widely used as an indirect method for measuring crack width, there is a problem due to the viscosity of water, and also a possibility that the internal material of the specimen may be eluted during the test. In this study, we propose a crack width evaluation method using gas diffusion characteristics. Idealized straight cracks were fabricated by acrylic and the diffusion coefficients of specimens were analyzed with respect to crack width and thickness. The experimental results show that the crack width and the diffusion coefficient are in a linear relationship and that the thickness and diffusion coefficient are inversely related.

키워드

GSJHDK_2018_v6n4_245_f0001.png 이미지

Fig. 1. Oxygen permeability test of none cracking specimen

GSJHDK_2018_v6n4_245_f0002.png 이미지

Fig. 2. Experiment device

GSJHDK_2018_v6n4_245_f0003.png 이미지

Fig. 3. Measuring device for oxygen gas concentration

GSJHDK_2018_v6n4_245_f0004.png 이미지

Fig. 4. Oxygen concentration change of C series with respect to measuring time

GSJHDK_2018_v6n4_245_f0005.png 이미지

Fig. 5. Relationship between diffusion coefficient and crack width for C series specimens

GSJHDK_2018_v6n4_245_f0006.png 이미지

Fig. 6. Relationship between diffusion coefficient and specimen thickness for T series specimens

GSJHDK_2018_v6n4_245_f0007.png 이미지

Fig. 7. Oxygen inflow of T series specimens

Table 1. Specimen information

GSJHDK_2018_v6n4_245_t0001.png 이미지

Table 2. Diffusion coefficient of C series specimens

GSJHDK_2018_v6n4_245_t0002.png 이미지

Table 3. Oxygen Inflow through a crack for T series specimens

GSJHDK_2018_v6n4_245_t0003.png 이미지

참고문헌

  1. Abbas, A., Carcasses, M., Ollivier, J.P. (1999). Gas permeability of concrete in relation to its degree of saturation, Materials and Structures, 32, 3-8. https://doi.org/10.1007/BF02480405
  2. Chen, W., Skoczylas, F. (2010). "Gas permeability of macro-cracked concrete: effect of temperature and water saturation," 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FRAMCOS7, Jeju, Korea.
  3. Choi, S.W, Bae, W.H., Lee, K.M., Shin, K.J. (2017). Correlation between crack width and water flow of cracked mortar specimens measured by constant water head permeability test, Journal of the Korea Concrete Institute, 29(3), 267-273 [in Korean]. https://doi.org/10.4334/JKCI.2017.29.3.267
  4. Edvardsen, C. (1999). Water permeability and autogenous healing of cracks in concrete, ACI Materials Journal, 96(4), 448-454.
  5. Houaria, M.B.A., Abdelkader, M., Marta, C., Abdelhafid, K. (2017). Comparison between the permeability water and gas permeability of the concretes under the effect of temperature, Energy Procedia, 139, 725-730. https://doi.org/10.1016/j.egypro.2017.11.278
  6. Jacobs, F. (1998). Permeability to gas of partially saturated concrete, Magazine of Concrete Research, 50(2), 115-121. https://doi.org/10.1680/macr.1998.50.2.115
  7. Kim, C.H. (2001). Chemistry Dictionaries, Sehwa pub.
  8. Lee, D.K., Shin, K.J. (2017). "Crack width evaluation of concrete using gas diffusion experiment," Korean Society of Civil Engineers.
  9. Mehta, P.K., Monteiro, P.J.M. (2014). Concrete, Microstructure properties and Materials, Third edition, McGraw-hill, NewYork.
  10. Picandet, V., Khelidj, A., Bastian, G. (2001). Effect of axial compressive damage on gas permeability of ordinary and high performance concrete, Cement and Concrete Research, 31, 1525-1532. https://doi.org/10.1016/S0008-8846(01)00546-4
  11. Picandet, V., Khelidj, A., Bellegou, H. (2009). Crack effects on gas and water permeability of concretes, Cement and Concrete Research, 39(6), 537-547. https://doi.org/10.1016/j.cemconres.2009.03.009
  12. Rooij, M.D., Tittelboom, K.V., Belie, N.D., Schlangen, E. (2013). State-of-the-Art Report of RILEM Technical Committee 221-SHC: Self-Healing Phenomena in Cement-Based Materials, RILEM stats of the art report, 11.
  13. Shin, K.J., Bae, W.H., Kim, S.W., Lee, K.M. (2016). "Validation of permeability test for crack width assessment of concrete," healCON, TU Delft, Netherlands.
  14. Tittarelli, F. (2009). Oxygen diffusion through hydrophobic cement-based materials, Cement and Concrete Research, 39(10), 924-928. https://doi.org/10.1016/j.cemconres.2009.06.021
  15. Villani, C., Loser, M., Martine, J.W., Carmelo, D.B., Lura, P., Weiss, W.J. (2014). An inter lab comparison of gas transport testing procedures: Oxygen permeability and oxygen diffusivity, Cement and Concrete Composites, 53, 357-366. https://doi.org/10.1016/j.cemconcomp.2014.05.004
  16. Wang, K., Daniel, C.J., Surendra, P.S., Alan, F.K. (1997). Permeability study of cracked concrete, Cement and Concrete Research, 27(3), 381-393, https://doi.org/10.1016/S0008-8846(97)00031-8
  17. Wu, Z., Wong, H.S., Buenfeld, N.R. (2017). Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking, Cement and Concrete Research, 98, 136-154. https://doi.org/10.1016/j.cemconres.2017.04.006