• Title/Summary/Keyword: gas diffusion

Search Result 1,048, Processing Time 0.027 seconds

Diffusion-Selectivity Analysis of Permanent Gases through Carbon Molecular Sieve Membranes

  • Kang, Jong-Seok;Park, Ho-Bum;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.43-53
    • /
    • 2003
  • The selectivity of a gas in the carbon molecular sieve membrane (CMSM) can be expressed as the ratio of the product of the diffusivity and the solubility of two different gases. The diffusivity is also expressed as the product of the entropy and the total energy (kinetic and potential energy) in the nano-sized pore of the membrane. The present study calculates the entropic-energy and selectivity of penetrant gases such as H$_2$, O$_2$, N$_2$, and CO$_2$ from the gas-in-a box theory to physically analyze the diffusivity of penetrant gas in slit-shaped pore of CMSM focusing on the restriction of gas motion based on the size difference between penetrant gas pairs. The contribution of each energy term is converted to entropic term separately. By the conjugated calculation for each entropic-energy, the entropic effects on diffusivity-selectivity for gas pairs such as H$_2$/N$_2$, CO$_2$/N$_2$, and O$_2$/N$_2$ were analyzed within active pore of CMSM. In the activated diffusion domain, the calculated value of entropic-selectivity lies between 9.25 and 111.6 for H$_2$/N$_2$, between 3.36 and 6.0 for CO$_2$/N$_2$, and between 1.25 and 16.94 for O$_2$/N$_2$, respectively. The size decrement of active pore in CMSM had the direct effect on the reduction of translational entropic-energy and the contribution of vibrational entropic-energy for N$_2$, O$_2$, and H$_2$ was almost negligible. However, the vibrational entropic term of CO$_2$ might extravagantly affect on the entropic-selectivity.

PERFORMANCE CHARACTERISTICS OF A PROTON EXCHANGE MEMBRANE FUEL CELL(PEMFC) WITH AN INTERDIGITATED FLOW CHANNEL

  • Lee, P.H.;Cho, S.A.;Han, S.S.;Hwang, S.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.761-769
    • /
    • 2007
  • The configuration of the flow channel on a bipolar plate of a proton exchange membrane fuel cell(PEMFC) for efficient reactant supply has great influence on the performance of the fuel cell. Recent demand for higher energy density fuel cells requires an increase in current density at mid voltage range and a decrease in concentration overvoltage at high current density. Therefore, an interdigitated flow channel where mass transfer rate by convection through a gas diffusion layer is greater than the mass transfer by a diffusion mechanism through a gas diffusion layer was recently proposed. This study attempts to analyze the i-V performance, mass transfer and pressure drop in interdigitated flow channels by developing a fully three dimensional simulation model for PEMFC that can deal with anode and cathode flow together. The results indicate that the trade off between performance and pressure loss should be considered for efficient design of flow channels. Although the performance of the fuel cell with interdigitated flow is better than that with conventional flow channels due to a strong mass transfer rate by convection across a gas diffusion layer, there is also an increase in friction due to the strong convection through the porous diffusion layer accompanied by a larger pressure drop along the flow channel. It was evident that the proper selection of the ratio of channel and rib width under counter flow conditions in the fuel cell with interdigitated flow are necessary to optimize the interdigitated flow field design.

Experimental Investigations of the Characteristics of the Length Variation of Kerosene-Oxygen Laminar Diffusion Flames (등유-산소 층류 확산화염의 길이 변화 특성에 관한 실험적 연구)

  • Lee, Soo-Han;Lee, Jong won;Park, Seul Hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.22-27
    • /
    • 2018
  • The flame length in coaxial diffusion flame configurations was investigated when the kerosene fuel flow rate, temperature of the oxidizer stream, and inert gas concentrations in the oxidizer stream were varied. The diffusion flame was photographed using a Schlieren camera under each of the experimental conditions and the obtained images were then digitized to measure the flame length. The measured flame lengths were proportional to the kerosene fuel flow rate and increased with increasing temperature of the oxidizer stream. In addition, increases in the inert gas concentration in the oxidizer stream resulted in stretching of the flame. In particular, the flame was further elongated in the oxidizer steam diluted with helium gas. Inert substitutions in the oxidizer stream that can adjust the viscous drag are believed to be one of the important mechanisms that affect the length of the coaxial diffusion flames.

Separative Power of an Optimised Concurrent Gas Centrifuge

  • Bogovalov, Sergey;Borman, Vladimir
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.719-726
    • /
    • 2016
  • The problem of separation of isotopes in a concurrent gas centrifuge is solved analytically for an arbitrary binary mixture of isotopes. The separative power of the optimised concurrent gas centrifuges for the uranium isotopes equals to ${\delta}U=12.7(V/700m/s)^2(300K/T)(L/1m)kg{\cdot}SWU/yr$, where L and V are the length and linear velocity of the rotor of the gas centrifuge and T is the temperature. This equation agrees well with the empirically determined separative power of optimised counter-current gas centrifuges.

A Simulation of Diffusion coefficients for electrons in $SF_6$-Ar Gas Mixtures (시뮬레이션에 의한 $SF_6$-Ar혼합기체의 확산계수)

  • Seong, Nak-Jin;Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.163-166
    • /
    • 2006
  • Energy distribution function for electrons in $SF_6$-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range 30${\sim}$300(Td) by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2(%) and 0.5(%) $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method, The results show that the deduced longitudinal diffusion coefficients and transverse diffusion coefficients agree reasonably well with theoretical for a rang of E/N values The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

Prediction of the Diffusion Controlled Boundary Layer Transition with an Adaptive Grid (적응격자계를 이용한 경계층의 확산제어천이 예측)

  • Cho J. R.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.15-25
    • /
    • 2001
  • Numerical prediction of the diffusion controlled transition in a turbine gas pass is important because it can change the local heat transfer rate over a turbine blade as much as three times. In this study, the gas flow over turbine blade is simplified to the flat plate boundary layer, and an adaptive grid scheme redistributing grid points within the computation domain is proposed with a great emphasis on the construction of the grid control function. The function is sensitized to the second invariant of the mean strain tensor, its spatial gradient, and the interaction of pressure gradient and flow deformation. The transition process is assumed to be described with a κ-ε turbulence model. An elliptic solver is employed to integrate governing equations. Numerical results show that the proposed adaptive grid scheme is very effective in obtaining grid independent numerical solution with a very low grid number. It is expected that present scheme is helpful in predicting actual flow within a turbine to improve computation efficiency.

  • PDF

Diffusion Coefficients for Electrons in SF6-Ar Gas Mixtures by MCS-BEq (MCSBEq에 의한 SF6-Ar혼합기체의 확산계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.125-129
    • /
    • 2015
  • Energy distribution function for electrons in SF6-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range 30~300[Td] by a two term Boltzmann equation and a Monte Carlo Simulation using a set of electron cross sections determined by other authors experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6-Ar$ mixtures were measured by time-of-flight(TOF) method, The results show that the deduced longitudinal diffusion coefficients and transverse diffusion coefficients agree reasonably well with theoretical for a rang of E/N values. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

Diffusion coefficients of electrons in $SF_6$-Ar Mixtures Gas used by MCS-BEq Algorithm ($SF_6$-Ar 혼합기체(混合氣體)의 MCS-BE_q알고리즘에 의한 확산계수)

  • Kim, Sang-Nam;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1150-1153
    • /
    • 2004
  • Diffusion coefficients Of electrons in $SF_6$-Ar mixtures gas used by MCS- BEq algorithm has been analysed over the E/N range $30\sim300$(Td) by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method, The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

Combustion characteristics of coaxial diffusion flame with high preheated and swirled air (고온 공기와 선회수에 의한 동축 분류 화염의 연소 특성)

  • Kim, Jin-Sik;Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.112-117
    • /
    • 2001
  • An experiment using high preheated and swirled air in the coaxial diffusion flame burner was carried out in order to decrease NOx emission and improve the thermal efficiency. $N_2$ gas was used for diluent and propane was utilized for fuel. Combustion using high preheated air has two remarkable characteristics ; (1) low NOx emission with increasing dilution level, (2) high thermal efficiency in the furnace. Also, swirled air can mix fuel and oxidizer well in condition of diffusion flme and maintain the stable combustion. The color of flame changes from yellow to blue green according to increasing the dilution level of mixture gas. NO emission decreased with increasing dilution level and the swirl number.

  • PDF

Structure Behavior of Sputtered W-B-C-N Thin Film for various nitrogen gas ratios (PVD법으로 증착한 W-B-C-N 박막의 질소량에 따른 구조변화 연구)

  • Song, Moon-Kyoo;Lee, Chang-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.109-110
    • /
    • 2005
  • We have suggested sputtered W-C-N thin film for preventing thermal budget between semiconductor and metal. These results show that the W-C-N thin film has good thermal stability and low resistivity. In this study we newly suggested sputtered W-B-C-N thin diffusion barrier. In order to improve the characteristics, we examined the impurity behaviors as a function of nitrogen gas flow ratio. This thin film is able to prevent the interdiffusion during high temperature (700 to $1000^{\circ}C$) annealing process and has low resistivity ($\sim$200$\mu{\Omega}-cm$). Through the analysis of X-Ray diffraction, resistivity and XPS, we studied structure behavior of W-B-C-N diffusion barrier.

  • PDF