Browse > Article
http://dx.doi.org/10.1016/j.net.2016.01.024

Separative Power of an Optimised Concurrent Gas Centrifuge  

Bogovalov, Sergey (National Research Nuclear University (MEPHI))
Borman, Vladimir (National Research Nuclear University (MEPHI))
Publication Information
Nuclear Engineering and Technology / v.48, no.3, 2016 , pp. 719-726 More about this Journal
Abstract
The problem of separation of isotopes in a concurrent gas centrifuge is solved analytically for an arbitrary binary mixture of isotopes. The separative power of the optimised concurrent gas centrifuges for the uranium isotopes equals to ${\delta}U=12.7(V/700m/s)^2(300K/T)(L/1m)kg{\cdot}SWU/yr$, where L and V are the length and linear velocity of the rotor of the gas centrifuge and T is the temperature. This equation agrees well with the empirically determined separative power of optimised counter-current gas centrifuges.
Keywords
Diffusion in Strong Centrifugal Field; Gas Centrifuge; Isotope Separation; Separative Power;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Cohen, in: G.M. Murphy (Ed.), The Theory of Isotope Separation as Applied to the Large-scale Production of $U^{235}$, McGraw-Hill, New York, 1951.
2 H.G. Wood, J.B. Morton, Onsager's pancake approximation for the fluid dynamics of a gas centrifuge, J. Fluid Mech. 101 (1980) 1.   DOI
3 F. Doneddu, P. Roblin, H.G. Wood, Optimization studies for gas centrifuges, Sep. Sci. Technol. 35 (2000) 1207-1221.   DOI
4 A.P. Senchenkov, S.A. Senchenkov, V.D. Borisevich, Gas centrifuges, in: V.Yu. Baranov (Ed.), ISOTOPES: Properties, Production and Application, Vol. 1, Fizmatlit, Moscow, 2005, pp. 168-208 [in Russian].
5 V.D. Borisevich, O.N. Godisov, D.V. Yatsenko, Comparison of the circulation efficiency in gas centrifuges with different geometric and speed characteristics for uranium enrichment, Atom. Energy 116 (2015) 363-371.
6 V.D. Borisevich, V.D. Borman, G.A. Sulaberidze, V.I. Tokmantcev, A.V. Tikhomirov, Fizicheskie Osnovy Razdeleniya Isotopov V Gazovoi Centrifuge (Physical Basics of the Isotope Separation in Gas Centrifuge), Izdatel'skii dom MEI, Moscow, 2011 [In Russian].
7 R.S. Kemp, Gas centrifuge theory and development: a review of U.S. programs, Sci. Glob. Security 17 (2009) 1-19.   DOI
8 T. Mashimo, X. Huang, T. Osakabe, M. Ono, M. Nishihara, H. Ihara, Advanced high-temperature ultracentrifuge apparatus for mega-gravity material science, Rev. Sci. Instrum 74 (2003) 160.   DOI
9 K. Fuchs, R. Peierls, Separation of isotopes, Selected Scientific Papers of Sir Rudolf Peierls: (With Commentary), in: R.H. Dalitz, Sir Rudolf Peierls (Eds.), World scientific, 1997, pp. 303-320 (DTA rept. MS 12A, 1941).
10 O. Lamm, Die Differentialgleichung der Ultrazentrifugierung, Ark. Mat. Astron. Fys. 21B (1929) 1.
11 M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1964.
12 V.D. Borisevich, V.D. Borman, S.V. Bogovalov, V.A. Kislov, V.N. Tronin, I.V. Tronin, V.I. Abramov, S.V. Yupatov, On a formula to evaluate the separative power of long gas centrifuges, Sep. Sci. Technol. 49 (2014) 329-334.   DOI
13 S.V. Bogovalov, I.V. Tronin, Numerical modelling of the flow and isotope separation in centrifuge Iguasu for different lengths of the rotor, Proc. ICNAAM-2015, AIP Proceedings, 2016 (in press).