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a b s t r a c t

Theproblemof separation of isotopes in a concurrent gas centrifuge is solved analytically for

an arbitrary binary mixture of isotopes. The separative power of the optimised concurrent

gas centrifuges for the uranium isotopes equals to dU ¼ 12.7 (V/700 m/s)2(300 K/T)(L/1 m)

kg$SWU/yr, where L andV are the length and linear velocity of the rotor of the gas centrifuge

and T is the temperature. This equation agrees well with the empirically determined sepa-

rative power of optimised counter-current gas centrifuges.

Copyright © 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Separation of heavy isotopes in gas centrifuges (hereafter GCs)

has been used for industrial production of enriched uranium

from the middle of the past century. It is likely that this

method of isotope separation will remain the most efficient,

from the economical point of view, for the next few decades.

Despite the long history of using this method, a lot of impor-

tant problems of the physics of the isotope separation remain

unsolved. The problem of the separative power of GCs is the

most important among them. Knowledge or estimation of the

separative power of GCs is necessary for design of efficient

GCs and important for experts dealing with the problem of

nonproliferation of the separation technology.

An attempt to estimate the separative power of GCs has

been made, starting with Dirac [1]. He has shown that the

separative power dUmax of any GC can not exceed the value

dUmax ¼ prDL
2

�
DMV2

2RT

�2

; (1)

where rD is the density of uranium hexafluoride (UF6) times

the coefficient of self-diffusion of uranium isotopes 238U and
235U. DM is the mass difference between two uranium iso-

topes, R is the gas-law constant, T is the gas temperature, L is

the length of the GC rotor, and V is the linear velocity of the

rotor rotation.

In the early 1960s an Onsager group from US developed a

theory called the pancake approximation that reduced the
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problem of the GC gas dynamics to the solution of linear

elliptical equations of the sixth-order partial derivatives for

two variables [2,3]. This approach gave the following equation

for the separative power of the GC:

dU ¼ ð0:038V � 11:5ÞL; kg$SWU=yr: (2)

It is important to note that, in contrast to Eq. (1) where the

separative power increases as V4, in Eq. (2) the separative

power grows linearly with V.

Experimental data collected with the help of a large num-

ber of Russian GCs have shone new light on this question.

According to Senchenkov [4], the separative power is defined

by the following empirical equation:

dU ¼ 12L

�
V

700 m=s

�2� 2a
12 cm

�0:4

; kg$SWU=yr; (3)

where L is measured in meters. Recently this result has been

well confirmed by more extended experimental data [5].

The proportionality of dU to V2 in the empirical Eq. (3)

dramatically contradicts simple theoretical arguments. Let

coefficient q be defined as the ratio of the concentration of

U235 in the product flux over the concentration in the waste

flux. At relatively small q the separative power equals

dU ¼ qð1� qÞ Fðq� 1Þ2
2

; (4)

where q ¼ P/F is the ratio of the product mass flux P over feed

mass flux F [6]. Radial separation in the centrifugal field gives

the following dependence of q on V

q ¼ exp
DMgV2

2RT
; (5)

which unambiguously gives, dU~V4. This dependence takes

place in Eq. (1) but does not agree with the experiment. For

many years, this problem has remained a challenge for spe-

cialists. Recently a new equation defining the separative

power of GC has been proposed in Kemp [7].

dU ¼
�

V2L
33000

�
eE; kg$SWU=yr; (6)

where V is measured in meters per second, L is rotor length in

meters and eE is some numerical coefficient. This equation

already correctly reproduces the empirical law [Eq. (3)].

Nevertheless, the dependence of the optimised separative

power of the GC on the parameters remains an open problem

up to now. The solution of this problem is important from the

practical point of view. Simple estimates show that the

maximal possible separative power defined by Eq. (1) is four to

five times higher than the optimal separative power [Eq. (3)]

defined experimentally at V ¼ 700m/s and 2a ¼ 12cm. This

dramatic difference is due to the different dependence of the

separative power on V. In this connection a few fundamental

questions arise. What are the physical reasons for V2 depen-

dence in Eq. (3)?What factors limit the growth of dUwithV? Is it

possible to dispose these factors and to increase the separative

power of the gas centrifuges a few times at the same velocity

and length of the rotor? In otherwords, is it possible to design a

gas centrifuge a few times more efficient than existing ones?

Indeed, Eq. (3) is not a fundamental law of nature,whichmakes

gas centrifuges with higher separative power impossible.

To answer these questions it is necessary to perform a

huge amount of computational work on numerical simulation

and optimisation of the counter-current gas centrifugeswhich

are used for industrial enrichment of uranium. Even in this

case the success is not guaranteed. The gas flow in the

counter-current centrifuges is so complicated that it is diffi-

cult to understand the connection between the characteristics

of the flow and the final optimized separative power. There-

fore, it is reasonable to consider a gas centrifuge with much

simpler gas flow which allows us to consider the problem

analytically. In this case we have a chance to specify the na-

ture of the dependence of the optimised separative power on

the parameters and to find a guidance line for understanding

this dependence in the case of the counter-current centrifuge.

That is why we propose to answer the specified questions in

the model of the concurrent centrifuge. This type of GC has

been considered firstly in Cohen [1], where the separative

power of this type of GC has been estimated as

dU ¼ 0:166� 2prDL

�
DMV2

2RT

�2

; (7)

which is only 66% less than the maximal possible separative

power given by Eq. (1), and follow to V4 dependence of dU.

Nevertheless, the flow field assumed in Cohen [1] was rather

artificial. Therefore it is reasonable to reconsider this model

once more.

In thiswork for the first timewe give an analytical equation

for the separative power of an optimised concurrent gas

centrifuge for an arbitrary binary mixture of isotopes. In

contrast to the results mentioned above, we show that in the

case of uniform axial velocity of the working gas, the opti-

mised separative power is proportional to V2 which agrees

well with the empirical equation given by Eq. (3). This result

forces us to assume that in spite of difference in gas flow field

in the counter-current and concurrent centrifuges, the

dependence of the optimised (or maximal) separative power

on the parameters of the centrifuge is universal and does not

depend of the design of the centrifuge.

It is necessary to stress that we discuss here the separative

power of GC optimised on all parameters which can be

controlled by a designer. The separative power is the function

of a lot of parameters dU(V,L,T,a,a1,a2,…), where the series of

parameters ai includes, for example, pressure at the wall of

the rotor, F, q, variation of temperature along the rotor dT and

many others. Optimisation of the GC is reduced to a search for

the maximum of this function at the variation of all the pa-

rameters ai. Such a search is performed for every series of

V,L,T,anda. Therefore, the separative power of the optimised

GC depends only on the limited set of the parameters

V,L,T,anda. Such a formulation of the problem carries addi-

tional difficulties in the solution of the problem because it is

necessary not only to calculate the separative power of the GC,

but additionally to optimise (to findmaximal value) in relation

to all possible parameters at fixed V, L, a and T.

In conclusion of this section, it is worth also mentioning

that the process of the isotope separation and its efficiency is

interesting also in application to liquids which can be sub-

jected to the impact of the centrifugal field achieving 106g at

the temperature up to 500�C [8]. Therefore it is important to

define a general equation, defining the separative power of an
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optimised gas centrifuge for an arbitrary isotope mixture, not

only uranium isotopes.

The paper is organised as follows. In Section 2, we present

the scheme of the concurrent centrifuge, basic equations and

assumptions. In Section 3 the solution is described in details.

In Section 4 the optimised separative power is calculated and,

finally, we discuss the solution in Section 5.

2. Isotope separation in the concurrent
centrifuge

2.1. Hydrodynamics

The first model of the concurrent centrifuge has been consid-

ered by Cohen [1]. In this work we consider another version of

the concurrent centrifuge. The difference between these two

models is demonstrated in Fig. 1. In the Cohen scheme the gas

enters the GC in two streams at different radiuses at one end of

the rotor and flows axially to the other end, where the streams

are removed separately. The rest of the gas is in rigid body-

rotation and does not move along the axis. In our scheme the

working gas UF6 is loaded into the GC with feed flux F from the

top (inlet) with the velocity vz independent of the radius r. The

gas is in corotation with the rotor and uniformly moves to the

other end of the rotor. The enriched gas and depleted gas are

separated by an additional coaxial cylinder of radius smaller

than the radius of the rotor. This is the crucial difference be-

tween our scheme of the GC and the scheme explored by

Cohen [1], which explains the difference in our results. It is

necessary to stress that the scheme of Cohen is practically

impossible to realise in reality. It is difficult to imagine how to

provide two-stream flow of the gas through the rest of the gas

corotating with the rotor in real GCs. For this reason the Cohen

scheme of the concurrent centrifuge is interesting only from a

methodical point of view. As far as our scheme is concerned,

there is no problem in realisation of the gas flowalong the rotor

withmore or less uniformaxial velocity. This flow can easily be

realised in an experiment.

We assume that the pressure p and density r correspond to

the hydrodynamic equilibrium in the radial direction. They

are

p ¼ pwexp

�
gV2

2C2

��r
a

�2
� 1

�	
; (8)

and

r ¼ rwexp

�
gV2

2C2

��r
a

�2
� 1

�	
; (9)

where pw and rw are the pressure and density at thewall of the

rotor, g ¼ 1.067 is the adiabatic index of the working gas and

C ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gRT=m

p
is the sound velocity, while m¼ 0.352 kg/mol is the

molecular weight of UF6. The output of the gas occurs at the

bottom of the rotor (outlet). To simplify the hydrodynamics

we assume that the product P and waste W fluxes are sepa-

rated by a concentric tube with radius r*, which provides the

specified ratio of the product flux to the feed flux q ¼ P/F. In

this case the flow lines are the straight lines parallel to the

axis. Here we neglect second order effects affecting the

velocity of the gas due to the viscous stresses and heat con-

duction. Therefore, vz is constant everywhere in the GC.

F is connected with the parameters of the gas as follows:

F ¼
Za

0

rvz2prdr ¼ 2prwvza2C2

gV2

�
1� exp

��gV2

2C2

��
: (10)

The product flux P is defined as

P ¼
Zr�

0

rvz2prdr

¼ 2prwvza2C2

gV2

�
exp

�
gV2

2C2

��r�
a

�2
� 1

�	
� exp

�
� gV2

2C2

��
: (11)

Hereafter we neglect exp(�gV2/2C2) because its value is

close to between 10�11 and 10�14 for typical parameters of GC.

Then, radius r* is defined by the equation

q ¼ exp

�
gV2

2c2

��r�
a

�2
� 1

�	
(12)

2.2. Separative power

Concentration, c, in the feed flux equals to natural concen-

tration of uranium, c0 ¼ 7.114 � 10�3. We assume that c does

Feed flux (F)

r*

Product flux (P)
Waste flux (W)
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Fig. 1 e Schemes of the concurrent centrifuge: (A) used by

Cohen [1] and (B) used in this work. In the Cohen scheme,

the gas corotating with the rotor enters the rotor in the

form of two flows, F1 and F2. They go through the rotating

gas, which has no axial velocity, in the form of two

cylindrical flows. In our model, the corotating with the

rotor gas enters the rotor at the top end (inlet) with uniform

axial velocity. The product and waste fluxes are extracted

at the bottom (outlet). They are separated by a concentric

thin cylinder with radius r*.
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not depend on r in the feed flux. c increases near the rotational

axis and reduces at the wall, uponmotion of the gas along the

rotor. The separative power of the GC is defined as follows

dU ¼ PGðcPÞ þWGðcWÞ � FGðcFÞ; (13)

where G(c) ¼ (2c � 1)ln[c/(1 � c)] is the separative potential

introduced by Fuchs and Peierls [9]. Generalisation of this

equation (see Borisevich et al. [6]) to the case of the nonuni-

form flow through the feed inlet, product and waste outlets

gives

dU ¼
Z

GðcÞrvdS: (14)

In our case the integration over surface S which covers all

the boundaries of the working volume gives

dU ¼ 2p
Za

0

rvz½GðcÞ � Gðc0Þ�rdr; (15)

where G(c) is taken at the outlet.

3. Solution of the problem

3.1. Basic equations and assumptions

The equation defining diffusion of the mixture of uranium

isotopes in gaseous UF6 is as follows:

vrc
vt

þ vJk
vxk

¼ 0; (16)

where the components Jk, of the flux of UF6 with the light

uranium isotope in the cylindrical system of coordinates, are

given by the equations [10].

Jz ¼ rvzc� rD
vc
vz
; (17)

and

Jr ¼ rvrc� rD

�
vc
vr

þ DM
M

cð1� cÞ vlnp
vr

�
; (18)

where vr is the radial component of the gas velocity, c is the

concentration of UF6 with light isotope U235. In the case under

consideration vr ¼ 0, p should be taken from Eq. (6). The nat-

ural concentration c0 satisfies the condition c0 << 1. Concen-

tration does not change strongly in the concurrent GC.

Therefore, the condition c0 << 1 is valid everywhere and we

can consider the term (1 � c) as a constant equal to (1 � c0).

Product rD does not depend on pressure. Therefore, we

consider it as a constant.

It is worth pointing out here that we use hydrodynamical

equations for transport of binary mixture of isotopes which

is valid only if the path length of molecules is much less

than the radius of the rotor. This condition is not fulfilled in

the central part of the rotor where the density of the gas is

extremely small. Nevertheless, the violation of the hydro-

dynamic approximation can be neglected because this re-

gion gives an exponentially small contribution to the

separative power [see Eq. (15)]. Therefore below we formally

assume that the hydrodynamic approximation is valid

everywhere.

Substitution of the components of J into Eq. (16) gives the

following equation for the steady-state diffusion

vrvzc

vz
� rD

v2c

vz2
� rD

v

rvr

�
rvc

vr
þ d

gV2

C2

r2

a2
c

�
¼ 0; (19)

where d ¼ (DM/M)(1 � c0).

Let us introduce new variables t ¼ exp{gV2/4C2[(r/a)2 � 1]},
~z ¼ z=a and express concentration c as

c ¼ c0t
�dYðt; ~zÞ: (20)

In these variables, density r ¼ rwt
2. For Y we obtain the

following equation using these variables

t
v

vt
t
vY

vt
� 4t2

rwvza

rD

�
C2

gV2

�2
vY

v~z
þ 4

�
C2

gV2

�2
v2Y

v~z2
� d2Y ¼ 0: (21)

Here we neglect variation of (r/a)2. This is reasonable

because the geometrical scale Dr, on which density, pressure

and t vary along the radius, is small compared with a. Indeed,

Dr
a

¼ C2

gV2
: (22)

For UF6 typical C ¼ 86m/s, while V > 600 m/s. This means,

that

�
Dr
a

�
<2� 10�2.

Let us express rw in Eq. (21) through F using Eq. (8). Eq. (21)

therefore takes the form

t
v

vt
t
vY
vt

� t2
2F

parD

�
C2

gV2

�
vY
v~z

þ 4

�
C2

gV2

�2
v2Y

v~z2
� d2Y ¼ 0: (23)

Here it is convenient to replace variable ~z on variable x

according to the equation

x ¼ gV2

2C2
~z: (24)

Then we obtain

t
v

vt
t
vY
vt

� t2
F

parD
vY
vx

þ v2Y

vx2
� d2Y ¼ 0: (25)

This equation can be simplified. The third term

describing diffusion along the axial direction can be

neglected provided that it is much smaller than the second

term describing convection along the axial direction. This

condition holds if

F
parD

[
1
xL

; (26)

where xL ¼ (2C2/gV2)(L/a). We will subsequently see [see Eq.

(63)] that for the optimised GC this condition always takes

place.

The basic equation for the concentration takes the

following form in this case

t
v

vt
t
vY
vt

� t2
F

parD
vY
vx

� d2Y ¼ 0: (27)
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3.2. Boundary conditions

The boundary condition at the inlet (feed flux) follows to the

distribution

Yðt; 0Þ ¼ td; (28)

which corresponds to the uniform on radius concentration.

No boundary conditions should be specified at the outlet

end of the rotor because we neglect the axial diffusion and the

concentration is advected to this boundary from the compu-

tational domain. The boundary condition at the wall of the

rotor corresponds to zero flux of the concentration

vc
vr

þ dc
vlnp
vr

¼ 0: (29)

Substitution of the pressure distribution [Eq. (6)] into this

equation gives the followingboundary condition for functionY

gV2

2C2

r
a2
t�d

�
t
vY
vt

þ dY

�
¼ 0: (30)

At the wall of the rotor (t ¼ 1) this gives the following

boundary condition

t
vY
vt

þ dY ¼ 0: (31)

We formally extend the variation of t from 1 at the wall of

the rotor to 0, because t is of the order 10�11 to 10�14 at the axis

of rotation. We also neglect the variation of r/a assuming that

this parameter equals 1. Therefore, the boundary condition at

t ¼ 0 should be

t�d

�
t
vY
vt

þ dY

�
¼ 0: (32)

3.3. Solution

Wecan expand the solution of Eq. (27) on functions exp(�kx) in

a sum of series as follows

Yðt; xÞ ¼
X

expð � kixÞSiðxÞ; (33)

where functions Si satisfy the equation

v

tvt
t
vSi

vt
þ
�

Fki

parD
� d2

t2

�
Si ¼ 0: (34)

The general solution of this equation can be expressed as a

linear combination of Bessel functions Jd(lt) and J�d(lit)

Si ¼ EJdðlitÞ þ BJ�dðlitÞ; (35)

where E and B are some constants and li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðFkiÞ=ðparDÞ

p
. To

define these constants, let us firstly consider the boundary

condition at t ¼ 0. According to Abramowitz and Stegun [11],

the functions Jd(lit) and J�d(lit) behave near the point t ¼ 0 as

JdðlitÞ ¼ 1
Gðdþ 1Þ

�
lit
2

�d

; J�dðlitÞ

¼ 1
Gð1� dÞ

�
lit
2

��d
 

1� ðlitÞ2Gð1� dÞ
4Gð2� dÞ

!

: (36)

Thus, one of the functions is regular in this point, while

another diverges. Substitution of the function Jd in the limit

t / 0 (see Abramowitz and Stegun [11]) into the boundary

condition [Eq. (32)] gives the expression

2d
Gð1þ dÞ

�
li

2

�2

(37)

which does not equal 0. Substitution of J�d in the limit t/0

into Eq. (32) gives the expression

� 2l2�dt2�2d

22�dGð2� dÞ ; (38)

which goes to 0 at t/0. Thus, Si¼BJ�d(lit). The boundary con-

dition at the wall of the rotor gives

liv
J�dðliÞ
vli

þ dJ�dðliÞ ¼ 0: (39)

It follows from the properties of Bessel functions, that [11].

t
vJ�dðtÞ
vt

þ dJ�dðtÞ ¼ �J1�dðtÞ: (40)

Therefore, the boundary condition at the rotorwall gives us

the equation defining the eigenvalue of the problem

J1�dðliÞ ¼ 0: (41)

The four first eigenvalues are l0¼ 0, l1 ¼ 3.82, l2 ¼ 7, and

l3 ¼ 10.15 at d ¼ 3 � [1 � (7.114 � 10�3)]/352.

The eigenfunction at l ¼ 0 can be defined directly from Eq.

(34) as follows:

S0ðtÞ ¼ B0t
�d: (42)

Finally, the solution takes the form

Yðt; xÞ ¼ B0t
�d þ

Xi¼∞

i¼1

Biexpð � kixÞJ�dðlitÞ: (43)

Coefficients Bi in the expansion of the solution into the sum

of the series [Eq. (33)] are defined from the boundary condition

at the inlet x ¼ 0. This gives

td ¼ B0t
�d þ

Xi¼∞

i¼1

BiJ�dðlitÞ: (44)

Eigenfunctions J�d(lit) are orthogonal to each other and to t�d

with weight function t. Therefore, multiplication of this equa-

tion on t1�d and integration over t gives the following value of B0

B0 ¼ 1� d: (45)

Coefficients Bi are defined from the equations

Bi ¼

Z 1

0

tdJ�dðlitÞtdt
Z 1

0

J2�dðlitÞtdt
: (46)

It can be shown that for the specified boundary conditions

at t ¼ 0 and at t ¼ 1 we have
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Z1

0

tdJ�dðlitÞtdt ¼ 1

l2þd
i

�
21þd

Gð � dÞ � l1þd
i J�ð1þdÞðliÞ

�
; (47)

and

Z1

0

J2�dðlitÞtdt ¼
1

2J2�d

ðliÞ: (48)

4. Optimised separation power

It follows from Eqs. (8) and (10) that

2prvzrdr ¼ 2Ftdt: (49)

Therefore, the separative power [Eq. (15)] can be presented

as

dU ¼ F
Z1

0

½GðcÞ � Gðc0Þ�2tdt; (50)

where the integration is performed over the outlet. It is

convenient to express ki as

ki ¼ parD
F

l2i : (51)

In this case the solution can be presented as

cðt; xÞ ¼ c0ð1� dÞt�2d

"

1þ
X∞

1

Bi

ð1� dÞt
dexp

�
� parD

F
l2i x

�
J�dðlitÞ

#

:

(52)

Let us introduce new variable c as follows

F ¼ parDl21xc: (53)

Then the solution takes the form

cðt;cÞ ¼ c0ð1� dÞt�2d

"

1þ
X∞

1

Bi

ð1� dÞt
dexp

 

� l2i

l21c

!

J�dðlitÞ
#

; (54)

and the separative power becomes

dU ¼ parDl21xc
Z1

0

½GðcÞ � Gðc0Þ�2tdt: (55)

Substitution of Eq. (24) into this equation at z ¼ L gives the

following expression for dU

dU ¼ p

8

�
DM
M

�2

rDl21g
V2

C2
LFðd; c0;cÞ; (56)

where function F is

Fðd; c0;cÞ ¼ 4c

�
M
DM

�2 Z1

0

½GðcÞ � Gðc0Þ�2tdt: (57)

This function depends on three parameters: d,c0 and c. It

follows from Fig. 2 that the dependence of F on d and c0 can be

neglected at d≪1 and c0≪1. Variation of these parameters in a

rather wide range results in variation of the maximum of the

function and its position only by a few percent. These pa-

rameters are specified by the properties of the working gas

and are usually constant. The only variable parameter is c.

This is the dimensionless feed flux. Optimisation of the con-

current centrifuge is possible only on this flux. This has clear

physical sense. At fixed centrifuge length, L, and pressure, a

small feed flux results in a small velocity, vz. Slow advection

results in maximal possible separation of the isotopes. In this

condition decrease of the feed flux results in decrease of dU,

because of the first term in the right-hand side of Eq. (50). In

the opposite case of large feed flux, velocity vz can be so large

that the separation becomes negligibly small. dU decreases

because of decrease of the integral in the right-hand side of Eq.

(50). Therefore, dU has to have a maximum at some feed flux,

which corresponds to the optimal feed flux in the centrifuge.

The dependence of F on c is shown in Fig. 2. This function has

a maximum equal to ~0.9 at c ¼ 1.

To express the optimised separative power of the centri-

fuge in conventional separation work units (SWU) per year, it

is necessary tomultiply Eq. (56) by 1 year in seconds and by the

ratio of weight of the metallic uranium over weight of the

working gas equal to 238/352. After that we obtain

dU ¼ 12:7

�
V

700 m=s

�2�300 K
T

��
L

1 m

�
; kg � SWU

year
(58)

At the calculation of the separative power we assumed the

conventional value for. rD ¼ 2.3 � 10�5 Pa$s.

It is interesting to understand why the optimised separa-

tive power of the concurrent centrifuge depends on the ve-

locity of the rotor rotation as V2 and this does not contradict

Eq. (4). It follows from Eq. (52) that the maximal value of q�1

equals

q� 1 ¼ t�2d
� � 1 ¼ 2dln

1
q
; (59)

where t� ¼ q [see Eq. (12)]. If we kept the separation of the

fluxes q constant, upon increase of V, the value q � 1 remains
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Fig. 2 e Dependence of F on c at c0 ¼ 7.114 £ 10¡3 and

d ¼ 3/352(1 ¡ c0) (solid line), at c0 ¼ 7.114·10¡3 and

d ¼ 0.1(1 ¡ c0) (dotted line), and at c0 ¼ 0.5 and

d ¼ 3/352(1 ¡ c0) (dashed line).
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constant as well. According to Eq. (12) this means that upon

growth of V, the radius r* of the concentric tube separating the

product and waste fluxes should increase, keeping the

product

�
V
C

�2��r�
a

�2
� 1

�

constant. As a result, all the growth of dU with V is due to

growth of the feed flux. This flux increases with V because the

rate of the radial diffusion increases as V2. Therefore, it is

possible to increase themass flux proportional toV2 to provide

efficient separation. The same is valid for dependence of dU on

L. q and q do not depend on L. The feed flux increases pro-

portionally to L because the working gas has more travelling

time for radial separation.

The optimised separative power does not depend on the

pressure of the gas at the wall of the rotor. This is another

important feature of the obtained solution. It is clear why this

occurs. Everywhere density enters into the equations in

combination rvz. Product rD depends only on temperature,

not density. Correspondingly, Eq. (52) depends on the feed

flux F. Due to Eq. (10) the optimal separative power is not

unique on the plane of parameters pw, vz. Combining Eqs. (10)

and (53) at c¼1 we determine that the optimal dU is constant

along the line located on the plane pw,vz, defined by the

equation

pw$vz ¼ 1
4
rDl21LV

2

a2

�
gV2

C2

�
: (60)

In the case of specification of pressure the axial velocity

will be

vz ¼ 60

�
100 mmHg

pw

��
6 cm
a

�2� V
700 m=s

�4�300 K
T

��
L

1 m

�
; m=s:

(61)

Optimal feed flux equals

F ¼ prDl21
gV2

2C2
L ¼ 35

�
V

700 m=s

�2� L
1 m

�
; g=s: (62)

This means that the optimal concurrent centrifuge needs a

very large feed flux and provides very small coefficient of

separation defined by Eq. (59).

Now we are ready to make sure that Eq. (26) is fulfilled for

the optimised centrifuges. Substitution of Eq. (62) into Eq. (26)

shows that our solution is valid provided that

�
l1
L

a

�2

[1: (63)

This condition is fulfilled for all GC.

5. Discussion

In this work we have solved analytically the problem of

diffusion of an isotopemixture in the prescribed uniform axial

flow of the gas with an exponential profile of density along

radius in the concurrent centrifuge. The separative power of

the GC has been calculated and optimised on the basis of this

solution. The analytical equation for the optimised separative

power of the gas centrifuge is obtained practically from first

principles for any arbitrary binary mixture. The equation

agrees well with the empirical data [compare Eqs. (3) and (58)]

in the particular case of a mixture of uranium isotopes. Sur-

prisingly, even the numerical coefficient in this equation co-

incides with the experimental one in the limits of

uncertainties of the experimental data. Therefore, it is difficult

to avoid a conclusion that Eq. (56) has a much wider region of

application than was expected by us at the beginning. It is

likely that the optimised separative power of the counter-

current centrifuges is described by the same equation as

well. In other words, we suspect that the upper limit of the

separative power of the gas centrifuge is a unique function of

the basic parameters and does not depend on the design of the

centrifuge. At the present level of our knowledge this is still an

assumption. To make a final conclusion it is necessary to

performmuchwork on computer simulation of gas dynamics,

separation, and optimisation of the counter-current centri-

fuges and to compare the results with Eq. (56). Nevertheless,

the first results in this direction confirm that Eq. (58) gives the

correct optimised separative power and even more accurate

than Eq. (3). This equation allowed us recently to resolve a

rather important problem. It follows from numerical simula-

tions [12] that the specific optimised separative power reduces

with the length of the rotor, while Eq. (3) predicts a constant

value. Recently we performed special computational simula-

tions and show that this reduction is connected with a growth

of temperature with the length of the rotor of the optimised

centrifuge [13]. According to Eq. (58) this results in the

reduction of the separative power.
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