• Title/Summary/Keyword: gas cylinder

Search Result 744, Processing Time 0.027 seconds

Development of Conversion Technology of a Decrepit Diesel Vehicle to the Dedicated Natural Gas Vehicle (노후 디젤차량으로부터 전소 천연가스자동차로의 개조 기술 개발)

  • Ryu, Kyung-Hyun;Kim, Bong-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.73-81
    • /
    • 2006
  • A commercial diesel engine was converted into a dedicated natural gas engine to reduce the exhaust emissions in a retrofit of a diesel-fueled vehicle. The cylinder head and piston were remodeled into engine parts suited for a spark ignition engine using natural gas. The remodeling of the combustion chamber changed the compression ratio from 21.5 to 10.5. A multi-point port injection(MPI) system for a dedicated natural gas engine was also adopted to increase the engine power and torque through improved volumetric efficiency, to allow a rapid engine response to changes in throttle position, and to control the precise equivalence ratio during cold-start and engine warm-up. The performance and exhaust emissions of the retrofitted natural gas engine after remodeling a diesel engine are investigated. The emissions of the retrofitted natural gas engine were low enough to satisfy the limits for a transitional low emission vehicle(TLEV) in Korea. We concluded that a diesel engine can be effectively converted into a dedicated natural gas engine without any deterioration in engine performance or exhaust emissions.

Effects of Intake Gas Compositions on the Performance of Diesel Engine (흡기 조성 변화가 디젤기관의 성능에 미치는 영향)

  • Kim, S.W.;Lee, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.49-58
    • /
    • 1994
  • A study on the performance of a Diesel engine with various intake gas compositions other than that of air are performed experimentally. In this study, the concentrations of each of oxygen, nitorgen, carbon dioxide, and argon are changed and their effects on the performance of the engine are investigated parametrically. The experiments are performed at constant engine speed condition, and main measured parameters are cylinder pressure, intake gas compositions, fuel consumption rate. Increase of oxygen concentration up to 24% improved the performance of the engine generally. The adverse effect was observed when the oxygen concentration was increased over 24%. Increase of carbon dioxide concentration degraded the performance of the engine, mainly due to the lower specific heat ratio of carbon dioxide. Adding argon gas to the intake gas improved the overall performance. Finally, it is found that two most influencing factors affecting the performance of the Diesel engine in this study of intake gas composition variation are ignition delay and specific heat ratio of the intake gas.

  • PDF

A Study on the Development of a Hybrid Fiber Reinforced Composite for a Type 4 CNG Vessel (CNG용 Type 4 하이브리드 섬유 복합재 용기 개발에 대한 연구)

  • Cho, Sung-min;Cho, Min-sik;Jung, Geunsung;Lee, Sun-kyu;Lee, Seung-kuk;Park, Ki-dong;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.97-103
    • /
    • 2017
  • The objective of this study is to develop and commercialize an on-board fuel storage system for CNG vehicles. A type 4 vessel is made of resin-impregnated continuous filament windings on a polyamide (PA6) liner. In particular, this study localized the PA6 liner's fabrication and development. To analyze the filament winding, a specimen test was performed, and the results were verified values obtained using finite element analysis. In this study, the filament winding and fibers were optimized for a 207 bar composite cylinder in a compressed natural gas vehicle.

A Study on the Effect of Recirculated Exhaust Gas with Scrubber EGR System upon Exhaust Emissions in Diesel Engines (디젤기관의 배기 배출물에 미치는 스크러버형 EGR 시스템 재순환 배기의 영향에 관한 연구)

  • Bae, Myung-Whan;Ha, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1247-1254
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of $NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The simultaneous control of $NO_x$ and soot emissions in diesel engines is targeted in this study. The EGR system is used to reduce $NO_x$ emissions, and a novel diesel soot removal device with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate, and the exhaust oxygen concentration measured are used to analyse and discuss the influences of EGR rate on $NO_x$ and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions are decreased and soot emissions are increased owing to the drop of intake oxygen concentration and exhaust oxygen concentration, and the rise of equivalence ratio as the EGR rate rises.

COMPARATIVE STUDY OF GAS-TO-LIQUID (GTL) AS AN ALTERNATIVE FUEL USED IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

  • Wu, T.;Huang, Z.;Zhang, W.G.;Fang, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.421-428
    • /
    • 2007
  • This paper investigates the combustion and emission characteristics of a compression ignition engine fueled with neat and blended Shell's gas-to-liquid (GTL) fuel, which was derived from natural gas through the Fischer-Tropsch process. The experiments were conducted in a 6-cylinder DI diesel engine with pump timing settings of $6^{\circ},\;9^{\circ}\;and\;12^{\circ}$crank angle before TDC over ECE R49 and US 13-mode cycles separately and compared to a conventional diesel fuel. The results show that GTL exhibited almost the same power and torque output, improved fuel economy and effective thermal efficiency. It was found that GTL displayed lower peak in-cylinder combustion pressure and maximum heat release rate (HRR), the timings of the peak pressure and the maximum HRR were generally delayed, and the combustion durations were almost equivalent for diesel and GTL under the same speed-load condition. The results also indicate that, compared to diesel fuel, GTL blends showed a trend forward decreasing four regulated emissions simultaneously and a higher GTL fraction in blends contributing to further reductions in the emissions. In particular and on average, neat GTL significantly reduced HC, CO, NOx and PM by 16.4%, 17.8%, 18.3% and 32.4%, respectively, for all cases.

Effect of Recirculated Exhaust Gas Temperature on Performance and Exhaust Emissions in Diesel Engines with Scrubber EGR System (스크러버형 EGR시스템 디젤기관의 성능 및 배기 배출물에 미치는 재순환 배기온도의 영향)

  • 배명환;하태용;류창성;하정호;박재윤
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.75-82
    • /
    • 2002
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle four-cylinder, swirl chamber type, water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas recirculation(EGR) control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions. And a novel diesel soot-removal device with a cylinder-type scrubber which has five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection, however, would be included within those of scrubber EGR system. In order to study the effect of intake mixture temperature, a intake mixture heating device which has five heating coils is made of a steel drum. It is found that the specific fuel consumption rate is considerably elevated by the increase of intake mixture temperature, and that NOx emissions are markedly decreased as EGR rates are increased and intake mixture temperature is dropped, while soot emissions are increased with increasing EGR rates and intake mixture temperature.

  • PDF

A Study on Effect of Intake Mixture Temperature upon Fuel Economy and Exhaust Emissions in Diesel Engines with a Scrubber EGR System

  • Bae, Myung--Whan;Ryu, Chang-Seong;Yoshihiro Mochimaru;Jeon, Hyo-Joong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.315-331
    • /
    • 2004
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle. four-cylinder. swirl chamber type. water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas Recirculation (EGR) control system for reducing $\textrm{NO}_{x}$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce $\textrm{NO}_{x}$ emissions. And a novel diesel soot-removal device of cylinder-type scrubber with five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection. however. would be included within those of scrubber EGR system. In order to survey the effects of cooled EGR and moisture on $\textrm{NO}_{x}$ and soot emissions. the intake mixtures of fresh air and recirculated exhaust gas are heated up using a heater with five heating coils equipped in a steel drum. It is found that intake and exhaust oxygen concentrations are decreased, especially at higher loads. as EGR rate and intake mixture temperature are increased at the same conditions of engine speed and load. and that $\textrm{NO}_{x}$ emissions are decreased. while soot emissions are increased owing to the decrease in intake and exhaust oxygen concentrations and the increase in equivalence ratio. Thus ond can conclude that $\textrm{NO}_{x}$ and soot emissions are considerably influenced by the cooled EGR.

A Study on Effect of Environmental Characteristics by Intake Mixture Temperature in Scrubber EGR System Diesel Engines

  • Bae, Myung-Whan;Ryu, Chang-Sung
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.100-111
    • /
    • 2002
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle, four-cylinder, swirl chamber type, water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas recirculation(EGR) control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce $NO_x$ emissions. And a novel diesel soot-removal device of cylinder-type scrubber with five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection, however, would be included within those of scrubber EGR system. In order to survey the effect of intake mixture temperature on performance and exhaust emissions, the intake mixtures of fresh air and recirculated exhaust gas are heated by a heating device with five heating coils made of a steel drum. It is found that the specific fuel consumption rate is considerably elevated by the increase of intake mixture temperature, and that $NO_x$ emissions are markedly decreased as EGR rates are increased and intake mixture temperature is dropped, while soot emissions are increased with increasing EGR rates and intake mixture temperature. Thus one can conclude that the performance and exhaust emissions are considerably influenced by the cooled EGR.

  • PDF