• Title/Summary/Keyword: gas Separation

Search Result 998, Processing Time 0.041 seconds

Gas Separation Membranes - Current Status

  • Puri, Pushpinder S.
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.117-126
    • /
    • 1996
  • Membrane-based gas separation systems are now widely accepted and employed as unit operation in industrial gas, chemical, and allied industries. Following their successful commercialization in the late seventies to recover hydrogen from ammonia purge gas streams, membrane-based systems have gained acceptance in a wide variety of applications. Numerous systems are in operation today to: recover hydrogen from other purge gas and hydrocarbon streams; adjust the $H_{2}/CO$ ratio in syngas; remove $CO_{2}$ from natural gas; recover helium; dry gas streams; and separate air. Lower cost, ease of operation, operational flexibility and portability are a few of the reasons membrane-based systems are chosen over absorption and cryogenic-based separations in certain applications.

  • PDF

Study on Separation Characteristics of Flue Gas Using Hydroquinone Clathrate Compounds (하이드로퀴논 크러스레이트를 이용한 배가스 분리 특성 연구)

  • Lee, Jong-Won;Choi, Ki-Jong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.865-868
    • /
    • 2011
  • An organic substance, hydroquinone is used to form clathrate compounds in order to identify separation characteristics of carbon dioxide in flue gas. Formed samples were analyzed by means of the solid-state $^{13}C$ nuclear magnetic resonance (NMR) and Raman spectroscopic methods to examine enclthration behaviors of guest species. In addition, elemnetal analysis was also performed in order to evaluate separation efficiency of $CO_2$ in a quantitative way. Based on the experimental results obtained, $CO_2$ molecules are found to be captured into the clathrate compound more readily than $N_2$ molecules. Moreover, because such preferential enclathration is even more significant at low pressure conditions, $CO_2$ separation/recovery from flue gas can be achieved with minimizing additional energy cost for the technique. Experimental results obtained in this study can provide useful information on separation techniques of flue gas or selective separation of gas mixtures in the future.

Separative Power of an Optimised Concurrent Gas Centrifuge

  • Bogovalov, Sergey;Borman, Vladimir
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.719-726
    • /
    • 2016
  • The problem of separation of isotopes in a concurrent gas centrifuge is solved analytically for an arbitrary binary mixture of isotopes. The separative power of the optimised concurrent gas centrifuges for the uranium isotopes equals to ${\delta}U=12.7(V/700m/s)^2(300K/T)(L/1m)kg{\cdot}SWU/yr$, where L and V are the length and linear velocity of the rotor of the gas centrifuge and T is the temperature. This equation agrees well with the empirically determined separative power of optimised counter-current gas centrifuges.

Study of Energy Separation Mechanism in Vortex Tube by CFD (볼텍스 튜브의 에너지 분리 현상에 관한 수치해석 연구)

  • Choi, Won-Chul;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.92-99
    • /
    • 2008
  • The "energy separation phenomenon" through a vortex tube has been a long-standing mechanical engineering problem whose operational principle is not yet known. In order to find the operational principle of the vortex tube, CFD analysis of the flow field in the vortex tube has been carried out. It was found that the energy separation mechanism in the vortex tube consists of basically two major thermodynamic-fluid mechanical processes. One is the isentropic expansion process at the inlet nozzle, during which the gas temperature is nearly isentropically cooled. Second process is the viscous dissipation heating due to the high level of turbulence in both flow passages toward cold gas exit as well as the hot gas exit of the vortex tube. Since the amount of such a viscous heating is different between the two passages, the gas temperature at the cold exit is much lower than that at the hot exit.

Separation of dissolved gases from water using synthesized gases based on exhalation characteristics

  • Heo, Pil Woo;Park, In Sub
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1347-1353
    • /
    • 2014
  • It's possible for a human to breathe under water, if dissolved oxygen is effectively used. Fish can stay under water using the gill which extracts dissolved oxygen from water. Water includes small amounts of oxygen, so a human needs larger amounts of water to acquire oxygen enough for underwater breathing. The exhalation gas from a human is another method to get higher amounts of oxygen under water. It mainly composes of oxygen, nitrogen and carbon dioxide. So, if only carbon dioxide is decreased, the exhalation gas has good characteristics for breathing of a human under water. In this paper, composition of the exhalation gas from a human was analyzed using GC. Based on these results, the synthesized gas was prepared and mixed into water which was used for experimental devices to analyze separation characteristics of dissolved gases from water. Experimental devices included a water pump, a hollow fiber membrane module and a vacuum pump. The effects of pressure and water flow on separation characteristics of synthesized gas were investigated. The compositions of gases separated from water using synthesized gas were investigated using GC. These results expect to be applied to the development of underwater breathing technology for a human.

An Analysis on the Cryogenic Distillation Process for $^{13}CH_4$ Separation from LNG by Short-Cut Method (Short-Cut 방법에 의한 LNG 성분에서 $^{13}CH_4$초저온 증류 공정 분석)

  • Lee Youngchul;Song Taekyoong;Cho ByungHak;Baek Youngsoon;Song KyuMin
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.22-27
    • /
    • 2005
  • In this study, we analyze computational simulation of cryogenic distillation process to separate $^{13}CH_4$ and $^{12}CH_4$ from LNG by using the cryogenic energy. Used computational simulation program is made Smoker's equation and FUG(Fenske-Underwood-Gilliland)'s method by short-cut method. Generally speaking, the technology of carbon isotope separation is studied by many methods, especially the separation by cryogenic distillation process is commercialized because of many merits.

  • PDF

Discovery of Porous Materials for H2/CO2 Gas Separation and High-Throughput Computational Screening (수소/이산화탄소 가스분리용 다공성 물질 탐색 및 고속전산스크리닝 연구동향)

  • Byung Chul Yeo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Gas separation technology becomes more useful because key gases such as H2 and CO2 regarding renewable energy resources and environmental pollutant can be effectively extracted in mixed gases. For reducing energy consumption on gas separation, membrane and adsorption processes are widely used. In both processes, porous materials are needed as membrane and adsorbent. In particular, metal-organic frameworks (MOFs), one class of the porous materials, have been developed for the purpose of gas adsorption and separation. While the number of the MOF structures is increasing due to chemical and structural tunability, good MOF membranes and adsorbents have been rarely reported by trial-and-error experiments. To accelerate the discovery of high-performing porous materials that can separate H2 and CO2, a high-throughput computational screening technique was used as efficient skill. This review introduces crucial studies of porous materials and the high-throughput computational screening works focusing on gas separation of H2 and CO2.

MEMBRANE-BASED GAS AND VAPOR SEPARATIONS

  • Wijmans, Hans
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.3-6
    • /
    • 2004
  • Industrial gas separation by membranes began in 1980 with the introduction of hollow-fiber polysulfone membrane systems by Permea, at that time a division of Monsanto. This first application was the recovery of hydrogen from ammonia reactor purge gas and was soon followed by the generation of nitrogen from air. Today, membrane gas separation ranks second behind cryogenic distillation in terms of nitrogen production, and this application has drawn the industrial gas companies into the membrane field.(omitted)

  • PDF