Acknowledgement
이 논문은 2020학년도 부경대학교 신임교수 학술연구지원사업(CD20201552)의 연구비 지원을 받아 수행된 연구이며, 이에 감사드립니다.
References
- Chu, S., Cu, Y. and Liu, N., "The Path Towards Sustainable energy," Nat. Mater., 16, 16(2016).
- Khan, M. A., Al-Shankiti, I., Ziania, A. and Idriss, H., "Demonstration of Green Hydrogen Production Using Solar Energy at 28% Efficiency and Evaluation of Its Economic Viability," Sustain. Energy Fuels., 5, 1085-1094(2021). https://doi.org/10.1039/D0SE01761B
- Tollefson, J., "Hydrogen Vehicles: Fuel of the Future?," Nature, 464, 1262-1264(2010). https://doi.org/10.1038/4641262a
- Chu, S., "Carbon Capture and Sequestration," Science, 325, 1599 (2009).
- Tao, Y., Xue, Q., Liu, Z., Shan, M., Ling, C., Wu, T. and Li, X., "Tunable Hydrogen Separation in Porous Graphene Membrane: First-Principle and Molecular Dynamic Simulation," ACS Appl. Mater. Interfaces, 6, 8048-8058(2014). https://doi.org/10.1021/am4058887
- Jaschik, J., Tanczyk, M., Warmuzinski, K. and Jaschik, M., "The Modeling of Multi-component Adsorption Equilibria in Hydrogen Recovery by Pressure Swing Adsorption," Chem. Process Eng., 30, 511-522(2009).
- Sircar, S., Waldron, W. E., Rao, M. B. and Anand, M., "Hydrogen Production by Hybrid SMR-PSA-SSF Membrane System," Sep. Purif. Technol., 17, 11-20(1999). https://doi.org/10.1016/S1383-5866(99)00021-0
- Park, J. H., Kim, J. N., Cho, S. H., Kim, J. D. and Yang, R. T., "Adsorber Dynamics and Optimal Design of Layered Beds for Multicomponent Gas Adsorption," Chem. Eng. Sci., 53, 3951-3963 (1998). https://doi.org/10.1016/S0009-2509(98)00196-1
- Sholl, D. S. and Lively, R. P., "Seven Chemical Separations to Change the World," Nature, 532, 435-437(2016). https://doi.org/10.1038/532435a
- U.S. Department of Energy (DOE), "Materials for Separation Technologies: Energy and Emission Reduction Opportunities," (2005).
- Sun, C., Wen, B. and Bai, B., "Application of Nanoporous Graphene Membranes in Natural Gas Processing: Molecular Simulations of CH4/CO2, CH4/H2S and CH4/N2 Separation," Chem. Eng. Sci., 138, 616-621(2015). https://doi.org/10.1016/j.ces.2015.08.049
- Yang, R. T., Gas Separation by Adsorption Progress, Butterworth, Boston(1987).
- Feng, X., Pan, C. Y., Ivory, J. and Ghosh, D., "Integrated Membrane/adsorption Process for Gas Separation," Chem. Eng. Sci., 53, 1689-1698(1998). https://doi.org/10.1016/S0009-2509(97)00440-5
- Lin, J. Y. S., "Molecular Sieves for Gas Separation," Science, 353, 6295(2016).
- Sanders, D. F., Smith, Z. P., Guo, R., Robeson, L. M., McGrath, J. E., Paul, D. R. and Freeman, B. D., "Energy Efficient Polymeric Gas Separation Membranes for a Sustainable Future: a Review," Polymer, 54, 4729-4761(2013). https://doi.org/10.1016/j.polymer.2013.05.075
- Peters, T. and Caravella, A., "Pd-based Membranes: Overview and Perspectives," Membranes, 9, 1-5(2019). https://doi.org/10.3390/membranes9010001
- Nomura, M., Ono, K., Gopalakrishnan, S., Sugawara, T. and Nakao, S. I., "Preparation of a Stable Silica Membrane by a Counter Diffusion Chemical Vapor Deposition Method," J. Membr. Sci., 251, 151-158(2005). https://doi.org/10.1016/j.memsci.2004.11.008
- Duval, J.-M., Kemperman, A. J. B., Folkers, B., Mulder, M. H. V., Desgrandchamps, G. and Smolders, C. A., "Preparation of Zeolite Filled Glassy Polymer Membranes," J. Appl. Polym. Sci., 54, 409-418(1994). https://doi.org/10.1002/app.1994.070540401
- Murray, L. J., Dinca, M. and Long, J. R., "Hydrogen Storage in Metal-organic Frameworks," Chem. Soc. Rev., 38, 1294-1314(2009). https://doi.org/10.1039/b802256a
- Dinca, M., Dailly, A., Liu, Y., Brown, C. M., Neumann, D. A. and Long, J. R., "Hydrogen Storage in a Microporous MetalOrganic Framework with Exposed Mn2+ Coordination Sites," J. Am. Chem. Soc., 128, 16876-16883(2006). https://doi.org/10.1021/ja0656853
- Han, S. S. and Goddard, W. A. III., "Lithium-Doped MetalOrganic Frameworks for Reversible H2 Storage at Ambient Temperature," J. Am. Chem. Soc., 129, 8422-8423(2007). https://doi.org/10.1021/ja072599+
- Blomqvist, A., Araujo, C. M., Srepusharawoot, P. and Ahuja, R. L., "Li-decorated Metal-Organic Framework 5: A Route to Achieving a Suitable Hydrogen Storage Medium," Proc. Natl. Acad. Sci., 104, 20173-20176(2007). https://doi.org/10.1073/pnas.0708603104
- Latroche, M., Surble, S., Serre, C., Mellot-Draznieks, C., Llewellyn, P. L., Lee, J. H., Chang, J. S., Sung, H. J. and Ferey, G., "Hydrogen Storage in the Giant-Pore Metal-Organic Frameworks MIL100 and MIL-101," Angew. Chem. Int. Ed., 45, 8227-8231(2006). https://doi.org/10.1002/anie.200600105
- Mavrandonakis, A., Klontzas, E., Tylianakis, E. and Froudakis, G. E., "Enhancement of Hydrogen Adsorption in Metal-Organic Frameworks by the Incorporation of the Sulfonate Group and Li Cations. A Multiscale Computational Study," J. Am. Chem. Soc., 131, 13410-13414(2009). https://doi.org/10.1021/ja9043888
- Mavrandonakis, A., Tylianakis, E., Stubos, A. K. and Froudakis, G. E., "Why Li Doping in MOFs Enhances H2 Storage Capacity? A MultiScale Theoretical Study," J. Phys. Chem. C, 112, 7290-7294 (2008). https://doi.org/10.1021/jp7102098
- Daglar, H. and Keskin, S., "Recent Advances, Opportunities, and Challenges in High-throughput Computational Screening of MOFs for Gas Separations," Coord. Chem. Rev., 422, 213470 (2020).
- An, J., Geib, S. J. and Rosi, N. L. "High and Selective CO2 Uptake in a Cobalt Adeninate Metal-Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores," J. Am. Chem. Soc., 132, 38-39(2010). https://doi.org/10.1021/ja909169x
- Bae, Y. S. and Snurr, R. Q., "Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture," Angew. Chem. Int. Ed., 50, 11586-11596(2011). https://doi.org/10.1002/anie.201101891
- Wang, B., Cote, A. P., Furukawa, H., O'Keeffe, M. and Yaghi, O. M., "Colossal Cages in Zeolitic Imidazolate Frameworks as Selective Carbon Dioxide Reservoirs," Nature, 453, 207-211(2008). https://doi.org/10.1038/nature06900
- Thallapally, P. K., Tian, J., Kishan, M. R., Fernandez, C. A., Dalgarno, S. J., McGrail, P. B., Warren, J. E. and Atwood, J. L., "Flexible (breathing) Interpenetrated Metal-organic Frameworks for CO2 Separation Applications," J. Am. Chem. Soc., 130, 16842-16843(2008). https://doi.org/10.1021/ja806391k
- Beck, D. W., Zeolite Molecular Sieves, John Wiley & Sons, New York(1974).
- Li, H., Eddaoudi, M., Groy, T. L. and Yaghi, O. M., "Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC) 1,4-Benzenedicarboxylate)," J. Am. Chem. Soc., 120, 8571-8572(1998). https://doi.org/10.1021/ja981669x
- Furukawa, H., Cordova, K. E., O'Keeffe, M. and Yaghi, O. M., "The Chemistry and Applications of Metal-organic Frameworks," Science, 341, 1230444-1230444(2013). https://doi.org/10.1126/science.1230444
- Chen, B., Yang, Z., Zhu, Y. and Xia, Y., "Zeolitic Imidazolate Framework Materials: Recent Progress in Synthesis and Applications," J. Mater. Chem. A, 2, 16811-16831(2014). https://doi.org/10.1039/C4TA02984D
- Li, J.-R., Sculley, J. and Zhou, H.-C., "Metal-Organic Frameworks for Separations," Chem. Rev., 112, 869-932(2012). https://doi.org/10.1021/cr200190s
- Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. and Kim, K., "Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties," J. Am. Chem. Soc., 126, 32-33(2004). https://doi.org/10.1021/ja038678c
- Yeo, B. C., Kim, D., Kim, H. and Han, S. S., "High-Throughput Screening to Investigate the Relationship between the Selectivity and Working Capacity of Porous Materials for Propylene/Propane Adsorptive Separation," J. Phys. Chem. C, 120, 24224-24230 (2016). https://doi.org/10.1021/acs.jpcc.6b08177
- Park, J., Lively, R. P. and Sholl, D. S., "Establishing Upper Bounds on CO2 Swing Capacity in Sub-ambient Pressure Swing Adsorption via Molecular Simulation of Metal-organic Frameworks," J. Mater. Chem. A, 5, 12258-12265(2017). https://doi.org/10.1039/C7TA02916K
- Chung, Y. G., Gomez-Gualdron, D. A., Li, P., Leperi, K. T., Deria, P., Zhang, H., Vermeulen, N. A., Stoddart, J. F., You, F. and Hupp, J. T., "In Silico Discovery of Metal-organic Frameworks for Precombustion CO2 Capture Using a Genetic Algorithm," Sci. Adv., 2, 1600909(2016).
- Krishna, R. and van Baten, J. M., "In Silico Screening of Metal- organic Frameworks in Separation Applications," Phys. Chem. Chem. Phys., 13, 10593-10616(2011). https://doi.org/10.1039/c1cp20282k
- Moghadam, P. Z., Li, A., Wiggin, S. B., Tao, A., Maloney, A. G. P., Wood, P. A., Ward, S. C. and Fairen-Jimenez, D., "Development of a Cambridge Structural Database Subset: A Collection of Metal-Organic Frameworks for Past, Present, and Future," Chem. Mater., 29, 2618-2625(2017). https://doi.org/10.1021/acs.chemmater.7b00441
- Allen, F. H., "The Cambridge Structural Database: a Quarter of a Million Crystal Structures and Rising," Acta Crystallogr., Sect. B: Struct. Sci., 58, 380-388(2002). https://doi.org/10.1107/S0108768102003890
- Koyuturk, B., Altintas, C., Kinik, F. P., Keskin, S. and Uzun, A. "Improving Gas Separation Performance of ZIF-8 by [BMIM][BF4] Incorporation: Interactions and Their Consequences on Performance," J. Phys. Chem. C, 121, 10370-10381(2017). https://doi.org/10.1021/acs.jpcc.7b00848
- Altintas, C., Avci, G., Daglar, H., Gulcay, E., Erucar, I. and Keskin, S., "Computer Simulations of 4240 MOF Membranes for H2/CH4 Separations: Insights into Structure-performance Relations," J. Mater. Chem. A, 6, 5836-5847(2018). https://doi.org/10.1039/C8TA01547C
- Avci, G., Velioglu, S. and Keskin, S., "High-Throughput Screening of MOF Adsorbents and Membranes for H2 Purification and CO2 Capture," ACS Appl. Mater. Interfaces, 10, 33693-33706 (2018). https://doi.org/10.1021/acsami.8b12746
- Liszka, M., Malik, T. and Manfrida, G., "Energy and Exergy Analysis of Hydrogen-oriented Coal Gasification with CO2 Capture," Energy, 45, 142-150(2012). https://doi.org/10.1016/j.energy.2012.03.054
- Martinez, I., Romano, M. C., Chiesa, P., Grasa, G. and Murillo, R., "Hydrogen Production Through Sorption Enhanced Steam Reforming of Natural Gas: Thermodynamic Plant Assessment," Int. J. Hydrogen Energy, 38, 15180-15199(2013). https://doi.org/10.1016/j.ijhydene.2013.09.062
- Dzuryk, S. and Rezaei, E., "Intensification of the Reverse Water Gas Shift Reaction by Water-Permeable Packed-Bed Membrane Reactors," Ind. Eng. Chem. Res., 59, 18907-18920(2020). https://doi.org/10.1021/acs.iecr.0c02213
- Lim, D.-W., Ha, J., Oruganti, Y. and Moon, H. R., "Hydrogen Separation and Purification with MOF-based Materials," Mater. Chem. Front., 5, 4022-4041(2021). https://doi.org/10.1039/D1QM00234A
- Freeman, B. D., "Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes," Macromolecules 32, 375-380(1999). https://doi.org/10.1021/ma9814548
- Kang, Z., Xue, M., Fan, L., Huang, L., Guo, L., Wei, G., Chen, B. and Qiu, S., "Highly Selective Sieving of Small Gas Molecules by Using An Ultra-microporous Metal-organic Framework Membrane," Energy Environ. Sci., 7, 4053-4060(2014). https://doi.org/10.1039/C4EE02275K
- Kang, Z., Wang, S., Fan, L., Zhang, M., Kang, W., Pang, J., Du, X., Guo, H., Wang, R. and Sun, D., "In Situ Generation of Intercalated Membranes for Efficient Gas Separation," Chem. Commun., 1, 1-8(2018). https://doi.org/10.1038/s42004-018-0011-5
- Du, Z., Liu, C., Zhai, J., Guo, X., Xiong, Y., Su, W. and He, G., "A Review of Hydrogen Purification Technologies for Fuel Cell Vehicles," Catalysts 11, 393(2021).
- Banu, A.-M., Friedrich, D., Brandani, S. and Dueren, T., "A Multiscale Study of MOFs as Adsorbents in H2 PSA Purification," Ind. Eng. Chem. Res., 52, 9946-9957(2013). https://doi.org/10.1021/ie4011035
- Agueda, V. I., Delgado, J. A., Uguina, M. A., Brea, P., Spjelkavik, A. I., Blom, R., Grande, C., "Adsorption and Diffusion of H2, N2, CO, CH4 and CO2 in UTSA-16 Metal-organic Framework Extrudates," Chem. Eng. Sci., 124, 159-169(2015). https://doi.org/10.1016/j.ces.2014.08.039
- Brea, P., Delgado, J., Agueda, V. I., Gutierrez, P. and Uguina, M. A., "Multicomponent Adsorption of H2, CH4, CO and CO2 in Zeolites NaX, CaX and MgX. Evaluation of Performance in PSA Cycles for Hydrogen Purification," Microporous Mesoporous Mater., 286, 187-198(2019). https://doi.org/10.1016/j.micromeso.2019.05.021
- Tong, M., Yang, Q. and Zhong, C., "Computational Screening of Covalent Organic Frameworks for CH4/H2, CO2/H2 and CO2/CH4 Separations," Microporous Mesoporous Mater., 210, 142-148(2015). https://doi.org/10.1016/j.micromeso.2015.02.034
- Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C., and Haranczyk, M., "Algorithms and Tools for High-throughput Geometry-based Analysis of Crystalline Porous Materials," Microporous Mesoporous Mater., 149, 134-141(2012). https://doi.org/10.1016/j.micromeso.2011.08.020
- Bakhshandeha, A. and Levin, Y., "Widom Insertion Method in Simulations with Ewald Summation," J. Chem. Phys. 156, 134110 (2022).
- Li, S., Chung, Y. G. and Snurr, R. Q. "High-Throughput Screening of Metal-Organic Frameworks for CO2 Capture in the Presence of Water," Langmuir 32, 10368-10376(2016). https://doi.org/10.1021/acs.langmuir.6b02803