DOI QR코드

DOI QR Code

Discovery of Porous Materials for H2/CO2 Gas Separation and High-Throughput Computational Screening

수소/이산화탄소 가스분리용 다공성 물질 탐색 및 고속전산스크리닝 연구동향

  • Byung Chul, Yeo (Department of Energy Resources Engineering, Pukyong National University)
  • 여병철 (부경대학교 에너지자원공학과)
  • Received : 2022.06.30
  • Accepted : 2022.08.08
  • Published : 2023.02.01

Abstract

Gas separation technology becomes more useful because key gases such as H2 and CO2 regarding renewable energy resources and environmental pollutant can be effectively extracted in mixed gases. For reducing energy consumption on gas separation, membrane and adsorption processes are widely used. In both processes, porous materials are needed as membrane and adsorbent. In particular, metal-organic frameworks (MOFs), one class of the porous materials, have been developed for the purpose of gas adsorption and separation. While the number of the MOF structures is increasing due to chemical and structural tunability, good MOF membranes and adsorbents have been rarely reported by trial-and-error experiments. To accelerate the discovery of high-performing porous materials that can separate H2 and CO2, a high-throughput computational screening technique was used as efficient skill. This review introduces crucial studies of porous materials and the high-throughput computational screening works focusing on gas separation of H2 and CO2.

가스 분리 기술은 혼합 가스로부터 신재생에너지 자원 및 환경 오염 물질과 관련된 수소(H2) 및 이산화탄소(CO2)와 같은 주요 가스를 효과적으로 추출할 수 있기 때문에 매우 유용하다. 에너지 소비를 줄이기 위한 가스 분리 기술로서 분리막 공정과 흡착 공정이 널리 사용되고 있는데, 두 공정 모두 분리막과 흡착제의 역할을 하는 다공성 물질이 필요하다. 특히 다공성 물질의 한 종류인 금속-유기물 골격체(Metal-organic frameworks, MOFs)는 가스 흡착 및 분리를 목적으로 발전되었다. 그런데 MOF 구조의 수가 지속적으로 증가하고 있지만 시행착오 실험을 통해 우수한 MOF 기반의 분리막과 흡착제를 발견하는데 효율적이지 않다. 따라서 수소와 이산화탄소를 분리할 수 있는 고성능 다공성 물질의 발견을 가속화하기 위해 고속전산스크리닝(High-throughput computational screening) 기술이 등장하였고 현재까지 활용되고 있다. 본 리뷰에서는 다공성 물질에 대한 중요한 연구와 수소와 이산화탄소의 가스 분리에 초점을 맞춘 고속 전산스크리닝 기술을 소개한다.

Keywords

Acknowledgement

이 논문은 2020학년도 부경대학교 신임교수 학술연구지원사업(CD20201552)의 연구비 지원을 받아 수행된 연구이며, 이에 감사드립니다.

References

  1. Chu, S., Cu, Y. and Liu, N., "The Path Towards Sustainable energy," Nat. Mater., 16, 16(2016).
  2. Khan, M. A., Al-Shankiti, I., Ziania, A. and Idriss, H., "Demonstration of Green Hydrogen Production Using Solar Energy at 28% Efficiency and Evaluation of Its Economic Viability," Sustain. Energy Fuels., 5, 1085-1094(2021). https://doi.org/10.1039/D0SE01761B
  3. Tollefson, J., "Hydrogen Vehicles: Fuel of the Future?," Nature, 464, 1262-1264(2010). https://doi.org/10.1038/4641262a
  4. Chu, S., "Carbon Capture and Sequestration," Science, 325, 1599 (2009).
  5. Tao, Y., Xue, Q., Liu, Z., Shan, M., Ling, C., Wu, T. and Li, X., "Tunable Hydrogen Separation in Porous Graphene Membrane: First-Principle and Molecular Dynamic Simulation," ACS Appl. Mater. Interfaces, 6, 8048-8058(2014). https://doi.org/10.1021/am4058887
  6. Jaschik, J., Tanczyk, M., Warmuzinski, K. and Jaschik, M., "The Modeling of Multi-component Adsorption Equilibria in Hydrogen Recovery by Pressure Swing Adsorption," Chem. Process Eng., 30, 511-522(2009).
  7. Sircar, S., Waldron, W. E., Rao, M. B. and Anand, M., "Hydrogen Production by Hybrid SMR-PSA-SSF Membrane System," Sep. Purif. Technol., 17, 11-20(1999). https://doi.org/10.1016/S1383-5866(99)00021-0
  8. Park, J. H., Kim, J. N., Cho, S. H., Kim, J. D. and Yang, R. T., "Adsorber Dynamics and Optimal Design of Layered Beds for Multicomponent Gas Adsorption," Chem. Eng. Sci., 53, 3951-3963 (1998). https://doi.org/10.1016/S0009-2509(98)00196-1
  9. Sholl, D. S. and Lively, R. P., "Seven Chemical Separations to Change the World," Nature, 532, 435-437(2016). https://doi.org/10.1038/532435a
  10. U.S. Department of Energy (DOE), "Materials for Separation Technologies: Energy and Emission Reduction Opportunities," (2005).
  11. Sun, C., Wen, B. and Bai, B., "Application of Nanoporous Graphene Membranes in Natural Gas Processing: Molecular Simulations of CH4/CO2, CH4/H2S and CH4/N2 Separation," Chem. Eng. Sci., 138, 616-621(2015). https://doi.org/10.1016/j.ces.2015.08.049
  12. Yang, R. T., Gas Separation by Adsorption Progress, Butterworth, Boston(1987).
  13. Feng, X., Pan, C. Y., Ivory, J. and Ghosh, D., "Integrated Membrane/adsorption Process for Gas Separation," Chem. Eng. Sci., 53, 1689-1698(1998). https://doi.org/10.1016/S0009-2509(97)00440-5
  14. Lin, J. Y. S., "Molecular Sieves for Gas Separation," Science, 353, 6295(2016).
  15. Sanders, D. F., Smith, Z. P., Guo, R., Robeson, L. M., McGrath, J. E., Paul, D. R. and Freeman, B. D., "Energy Efficient Polymeric Gas Separation Membranes for a Sustainable Future: a Review," Polymer, 54, 4729-4761(2013). https://doi.org/10.1016/j.polymer.2013.05.075
  16. Peters, T. and Caravella, A., "Pd-based Membranes: Overview and Perspectives," Membranes, 9, 1-5(2019). https://doi.org/10.3390/membranes9010001
  17. Nomura, M., Ono, K., Gopalakrishnan, S., Sugawara, T. and Nakao, S. I., "Preparation of a Stable Silica Membrane by a Counter Diffusion Chemical Vapor Deposition Method," J. Membr. Sci., 251, 151-158(2005). https://doi.org/10.1016/j.memsci.2004.11.008
  18. Duval, J.-M., Kemperman, A. J. B., Folkers, B., Mulder, M. H. V., Desgrandchamps, G. and Smolders, C. A., "Preparation of Zeolite Filled Glassy Polymer Membranes," J. Appl. Polym. Sci., 54, 409-418(1994). https://doi.org/10.1002/app.1994.070540401
  19. Murray, L. J., Dinca, M. and Long, J. R., "Hydrogen Storage in Metal-organic Frameworks," Chem. Soc. Rev., 38, 1294-1314(2009). https://doi.org/10.1039/b802256a
  20. Dinca, M., Dailly, A., Liu, Y., Brown, C. M., Neumann, D. A. and Long, J. R., "Hydrogen Storage in a Microporous MetalOrganic Framework with Exposed Mn2+ Coordination Sites," J. Am. Chem. Soc., 128, 16876-16883(2006). https://doi.org/10.1021/ja0656853
  21. Han, S. S. and Goddard, W. A. III., "Lithium-Doped MetalOrganic Frameworks for Reversible H2 Storage at Ambient Temperature," J. Am. Chem. Soc., 129, 8422-8423(2007). https://doi.org/10.1021/ja072599+
  22. Blomqvist, A., Araujo, C. M., Srepusharawoot, P. and Ahuja, R. L., "Li-decorated Metal-Organic Framework 5: A Route to Achieving a Suitable Hydrogen Storage Medium," Proc. Natl. Acad. Sci., 104, 20173-20176(2007). https://doi.org/10.1073/pnas.0708603104
  23. Latroche, M., Surble, S., Serre, C., Mellot-Draznieks, C., Llewellyn, P. L., Lee, J. H., Chang, J. S., Sung, H. J. and Ferey, G., "Hydrogen Storage in the Giant-Pore Metal-Organic Frameworks MIL100 and MIL-101," Angew. Chem. Int. Ed., 45, 8227-8231(2006). https://doi.org/10.1002/anie.200600105
  24. Mavrandonakis, A., Klontzas, E., Tylianakis, E. and Froudakis, G. E., "Enhancement of Hydrogen Adsorption in Metal-Organic Frameworks by the Incorporation of the Sulfonate Group and Li Cations. A Multiscale Computational Study," J. Am. Chem. Soc., 131, 13410-13414(2009). https://doi.org/10.1021/ja9043888
  25. Mavrandonakis, A., Tylianakis, E., Stubos, A. K. and Froudakis, G. E., "Why Li Doping in MOFs Enhances H2 Storage Capacity? A MultiScale Theoretical Study," J. Phys. Chem. C, 112, 7290-7294 (2008). https://doi.org/10.1021/jp7102098
  26. Daglar, H. and Keskin, S., "Recent Advances, Opportunities, and Challenges in High-throughput Computational Screening of MOFs for Gas Separations," Coord. Chem. Rev., 422, 213470 (2020).
  27. An, J., Geib, S. J. and Rosi, N. L. "High and Selective CO2 Uptake in a Cobalt Adeninate Metal-Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores," J. Am. Chem. Soc., 132, 38-39(2010). https://doi.org/10.1021/ja909169x
  28. Bae, Y. S. and Snurr, R. Q., "Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture," Angew. Chem. Int. Ed., 50, 11586-11596(2011). https://doi.org/10.1002/anie.201101891
  29. Wang, B., Cote, A. P., Furukawa, H., O'Keeffe, M. and Yaghi, O. M., "Colossal Cages in Zeolitic Imidazolate Frameworks as Selective Carbon Dioxide Reservoirs," Nature, 453, 207-211(2008). https://doi.org/10.1038/nature06900
  30. Thallapally, P. K., Tian, J., Kishan, M. R., Fernandez, C. A., Dalgarno, S. J., McGrail, P. B., Warren, J. E. and Atwood, J. L., "Flexible (breathing) Interpenetrated Metal-organic Frameworks for CO2 Separation Applications," J. Am. Chem. Soc., 130, 16842-16843(2008). https://doi.org/10.1021/ja806391k
  31. Beck, D. W., Zeolite Molecular Sieves, John Wiley & Sons, New York(1974).
  32. Li, H., Eddaoudi, M., Groy, T. L. and Yaghi, O. M., "Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC) 1,4-Benzenedicarboxylate)," J. Am. Chem. Soc., 120, 8571-8572(1998). https://doi.org/10.1021/ja981669x
  33. Furukawa, H., Cordova, K. E., O'Keeffe, M. and Yaghi, O. M., "The Chemistry and Applications of Metal-organic Frameworks," Science, 341, 1230444-1230444(2013). https://doi.org/10.1126/science.1230444
  34. Chen, B., Yang, Z., Zhu, Y. and Xia, Y., "Zeolitic Imidazolate Framework Materials: Recent Progress in Synthesis and Applications," J. Mater. Chem. A, 2, 16811-16831(2014). https://doi.org/10.1039/C4TA02984D
  35. Li, J.-R., Sculley, J. and Zhou, H.-C., "Metal-Organic Frameworks for Separations," Chem. Rev., 112, 869-932(2012). https://doi.org/10.1021/cr200190s
  36. Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. and Kim, K., "Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties," J. Am. Chem. Soc., 126, 32-33(2004). https://doi.org/10.1021/ja038678c
  37. Yeo, B. C., Kim, D., Kim, H. and Han, S. S., "High-Throughput Screening to Investigate the Relationship between the Selectivity and Working Capacity of Porous Materials for Propylene/Propane Adsorptive Separation," J. Phys. Chem. C, 120, 24224-24230 (2016). https://doi.org/10.1021/acs.jpcc.6b08177
  38. Park, J., Lively, R. P. and Sholl, D. S., "Establishing Upper Bounds on CO2 Swing Capacity in Sub-ambient Pressure Swing Adsorption via Molecular Simulation of Metal-organic Frameworks," J. Mater. Chem. A, 5, 12258-12265(2017). https://doi.org/10.1039/C7TA02916K
  39. Chung, Y. G., Gomez-Gualdron, D. A., Li, P., Leperi, K. T., Deria, P., Zhang, H., Vermeulen, N. A., Stoddart, J. F., You, F. and Hupp, J. T., "In Silico Discovery of Metal-organic Frameworks for Precombustion CO2 Capture Using a Genetic Algorithm," Sci. Adv., 2, 1600909(2016).
  40. Krishna, R. and van Baten, J. M., "In Silico Screening of Metal- organic Frameworks in Separation Applications," Phys. Chem. Chem. Phys., 13, 10593-10616(2011). https://doi.org/10.1039/c1cp20282k
  41. Moghadam, P. Z., Li, A., Wiggin, S. B., Tao, A., Maloney, A. G. P., Wood, P. A., Ward, S. C. and Fairen-Jimenez, D., "Development of a Cambridge Structural Database Subset: A Collection of Metal-Organic Frameworks for Past, Present, and Future," Chem. Mater., 29, 2618-2625(2017). https://doi.org/10.1021/acs.chemmater.7b00441
  42. Allen, F. H., "The Cambridge Structural Database: a Quarter of a Million Crystal Structures and Rising," Acta Crystallogr., Sect. B: Struct. Sci., 58, 380-388(2002). https://doi.org/10.1107/S0108768102003890
  43. Koyuturk, B., Altintas, C., Kinik, F. P., Keskin, S. and Uzun, A. "Improving Gas Separation Performance of ZIF-8 by [BMIM][BF4] Incorporation: Interactions and Their Consequences on Performance," J. Phys. Chem. C, 121, 10370-10381(2017). https://doi.org/10.1021/acs.jpcc.7b00848
  44. Altintas, C., Avci, G., Daglar, H., Gulcay, E., Erucar, I. and Keskin, S., "Computer Simulations of 4240 MOF Membranes for H2/CH4 Separations: Insights into Structure-performance Relations," J. Mater. Chem. A, 6, 5836-5847(2018). https://doi.org/10.1039/C8TA01547C
  45. Avci, G., Velioglu, S. and Keskin, S., "High-Throughput Screening of MOF Adsorbents and Membranes for H2 Purification and CO2 Capture," ACS Appl. Mater. Interfaces, 10, 33693-33706 (2018). https://doi.org/10.1021/acsami.8b12746
  46. Liszka, M., Malik, T. and Manfrida, G., "Energy and Exergy Analysis of Hydrogen-oriented Coal Gasification with CO2 Capture," Energy, 45, 142-150(2012). https://doi.org/10.1016/j.energy.2012.03.054
  47. Martinez, I., Romano, M. C., Chiesa, P., Grasa, G. and Murillo, R., "Hydrogen Production Through Sorption Enhanced Steam Reforming of Natural Gas: Thermodynamic Plant Assessment," Int. J. Hydrogen Energy, 38, 15180-15199(2013). https://doi.org/10.1016/j.ijhydene.2013.09.062
  48. Dzuryk, S. and Rezaei, E., "Intensification of the Reverse Water Gas Shift Reaction by Water-Permeable Packed-Bed Membrane Reactors," Ind. Eng. Chem. Res., 59, 18907-18920(2020). https://doi.org/10.1021/acs.iecr.0c02213
  49. Lim, D.-W., Ha, J., Oruganti, Y. and Moon, H. R., "Hydrogen Separation and Purification with MOF-based Materials," Mater. Chem. Front., 5, 4022-4041(2021). https://doi.org/10.1039/D1QM00234A
  50. Freeman, B. D., "Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes," Macromolecules 32, 375-380(1999). https://doi.org/10.1021/ma9814548
  51. Kang, Z., Xue, M., Fan, L., Huang, L., Guo, L., Wei, G., Chen, B. and Qiu, S., "Highly Selective Sieving of Small Gas Molecules by Using An Ultra-microporous Metal-organic Framework Membrane," Energy Environ. Sci., 7, 4053-4060(2014). https://doi.org/10.1039/C4EE02275K
  52. Kang, Z., Wang, S., Fan, L., Zhang, M., Kang, W., Pang, J., Du, X., Guo, H., Wang, R. and Sun, D., "In Situ Generation of Intercalated Membranes for Efficient Gas Separation," Chem. Commun., 1, 1-8(2018). https://doi.org/10.1038/s42004-018-0011-5
  53. Du, Z., Liu, C., Zhai, J., Guo, X., Xiong, Y., Su, W. and He, G., "A Review of Hydrogen Purification Technologies for Fuel Cell Vehicles," Catalysts 11, 393(2021).
  54. Banu, A.-M., Friedrich, D., Brandani, S. and Dueren, T., "A Multiscale Study of MOFs as Adsorbents in H2 PSA Purification," Ind. Eng. Chem. Res., 52, 9946-9957(2013). https://doi.org/10.1021/ie4011035
  55. Agueda, V. I., Delgado, J. A., Uguina, M. A., Brea, P., Spjelkavik, A. I., Blom, R., Grande, C., "Adsorption and Diffusion of H2, N2, CO, CH4 and CO2 in UTSA-16 Metal-organic Framework Extrudates," Chem. Eng. Sci., 124, 159-169(2015). https://doi.org/10.1016/j.ces.2014.08.039
  56. Brea, P., Delgado, J., Agueda, V. I., Gutierrez, P. and Uguina, M. A., "Multicomponent Adsorption of H2, CH4, CO and CO2 in Zeolites NaX, CaX and MgX. Evaluation of Performance in PSA Cycles for Hydrogen Purification," Microporous Mesoporous Mater., 286, 187-198(2019). https://doi.org/10.1016/j.micromeso.2019.05.021
  57. Tong, M., Yang, Q. and Zhong, C., "Computational Screening of Covalent Organic Frameworks for CH4/H2, CO2/H2 and CO2/CH4 Separations," Microporous Mesoporous Mater., 210, 142-148(2015). https://doi.org/10.1016/j.micromeso.2015.02.034
  58. Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C., and Haranczyk, M., "Algorithms and Tools for High-throughput Geometry-based Analysis of Crystalline Porous Materials," Microporous Mesoporous Mater., 149, 134-141(2012). https://doi.org/10.1016/j.micromeso.2011.08.020
  59. Bakhshandeha, A. and Levin, Y., "Widom Insertion Method in Simulations with Ewald Summation," J. Chem. Phys. 156, 134110 (2022).
  60. Li, S., Chung, Y. G. and Snurr, R. Q. "High-Throughput Screening of Metal-Organic Frameworks for CO2 Capture in the Presence of Water," Langmuir 32, 10368-10376(2016). https://doi.org/10.1021/acs.langmuir.6b02803