• Title/Summary/Keyword: gap sensor

Search Result 402, Processing Time 0.035 seconds

Analyses Thermal Stresses for Microaccelerometer Sensors using SOI Wafer(I) (SOI웨이퍼를 이용한 마이크로가속도계 센서의 열응력해석(I))

  • Kim, O.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.36-42
    • /
    • 2001
  • This paper deals with finite element analyses of residual stresses causing popping up which are induced in micromachining processes of a microaccelerometer sensors. The paddle of the micro accelerometer sensor is designed symmetric with respect to the direction of the beam. After heating the tunnel gap up to 100 degree and get it through the cooling process and the additional beam up to 80 degree and get it through the cooling process. We learn the thermal internal stresses of each shape and compare the results with each other, after heating the tunnel gap up to 400 degree during the Pt deposition process. Finally we find the optimal shape which is able to minimize the internal stresses of microaccelerometer sensor. We want to seek after the real cause of this pop up phenomenon and diminish this by change manufacturing processes of microaccelerometer sensor by electrostatic force.

  • PDF

Design of Fault tolerant controller for electromagentic suspenstion system (자기부상 시스템에서의 내 고장성 제어기 설계)

  • Jang, Seok-Myeong;Sung, So-Young;Kim, In-Kun;Sung, Ho-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.70-72
    • /
    • 1999
  • Actuator (chopper) and sensors failures resulting from electric shock and mechanical vibration generating by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes the reliable output feedback controller for the electromagnetic levitation systems against actuator, air-gap sensor and acceleration sensor failures. The designed controller is an extend version of a novel design technique which has the design method of the output feedback controller using dynamic compensator. The benefits of this scheme are demonstrated through the experimental results for the proposed controller against chopper, air-gap sensor and acceleration sensor failures of electromagnetic levitation system.

  • PDF

Design of Fault Tolerant Controller for Electromagnetic Supension System (자기부상시스템에서의 내고장성 제어기 설계)

  • Seong, Ho-Gyeong;Jo, Heung-Jae;Jeong, Seok-Yeong;Seong, So-Yeong
    • 연구논문집
    • /
    • s.30
    • /
    • pp.79-92
    • /
    • 2000
  • Chopper and sensors failures resulting from electric shock and mechanical vibration generated by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes a reliable output feedback control scheme for the electromagnetic suspension systems in the present of chopper, gap sensor and acceleration sensor failures. The designed controller is an extended version of a novel design technique which has the design method of the output feedback controller using dynamic compensator. The benefits of this scheme are demonstrated through the simulation and experimental results for proposed controller against chopper, gap sensor and acceleration sensor failures of electromagnetic suspension system.

  • PDF

Signal Processing of Capacitive Load and Gap Measurement with High Precision Using Surface Acoustic Wave Device (표면 탄성파 장치를 이용한 용량성 부하의 신호처리 및 이를 이용한 초정밀 간극 측정)

  • Kim, Jae-Geun;Lee, Taek-Joo;Lim, Soo-Cheol;Park, No-Cheol;Park, Young-Pil;Park, Kyoung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.376-380
    • /
    • 2009
  • Surface acoustic wave (SAW) device is widely used as a bandpass filter, a chemical or physical sensor, and an actuator. In this paper, we propose the capacitive gap measurement system with high precision through the signal processing using SAW device. The research process is mainly composed of theoretical part and experimental part. In theoretical part, equivalent circuit model was used to simulate the SAW response by the change of capacitance. In experimental part, commercialized capacitor was used to see the SAW response by the change of load capacitance. After that, gap adjustment system was made physically and the SAW response by the change of gap which caused the capacitance change was measured. And resolution and stroke was decided comparing the signal change and basic measurement noise level.

  • PDF

A Study on control of weld pool and torch position in GMA welding of steel pipe by using sensing systems (파이프의 가스메탈아크 용접에 있어 센서 시스템을 이용한 용융지 제어 및 용접선 추적에 관한 연구)

  • 배강열;이지형;정수원
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.119-133
    • /
    • 1998
  • To implement full automation in pipe welding, it si most important to develop special sensors and their related systems which act like human operator when detecting irregular groove conditions. In this study, an automatic pipe Gas Metal Arc Welding (GMAW) system was proposed to full control pipe welding procedure with intelligent sensor systems. A five-axes manipulator was proposed for welding torch to automatically access to exact welding position when pipe size and welding angle were given. Pool status and torch position were measured by using a weld-pool image monitoring and processing technique in root-pass welding for weld seam tracking and weld pool control. To overcome the intensive arc light, pool image was captured at the instance of short circuit of welding power loop. Captured image was processed to determine weld pool shape. For weld seam tracking, the relative distance of a torch position from the pool center was calculated in the extracted pool shape to move torch just onto the groove center. To control penetration of root pas, gap was calculated in the extracted pool image, and then weld conditions were controlled for obtaining appropriate penetration. welding speed was determined with a fuzzy logic, and welding current and voltage were determined from a data base to correspond to the gap. For automatic fill-pass welding, the function of human operator of real time weld seam control can be substituted by a sensor system. In this study, an arc sensor system was proposed based on a fuzzy control logic. Using the proposed automatic system, root-pass welding of pipe which had gap variation was assured to be appropriately controlled in welding conditions and in torch position by showing sound welding result and good seam tracking capability. Fill-pass welding by the proposed system also showed very successful result by tracking along the offset welding line without any control of human operator.

  • PDF

Displacement-Sensorless Control of Magnetic Bearing System using Current and Magnetic Flux Feedback (전류와 자속의 궤환에 의한 자기베어링 시스템의 센서가 없는 변위 제어)

  • Lee, Jun-Ho;Gang, Min-Su;Jeong, Yong-Un;Lee, Jeong-Seok;Lee, Gi-Seo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.339-345
    • /
    • 2000
  • This paper deals with the displacement estimation of magnetically suspended simple 1 DOF(degree of freedom) system without the displacement sensor. Inherently electro-magnet for control has two natural feedback loops. One is the transfer function which represents the dependance of the amount of the magnetic flux on the gap displace-ments. The other is the transfer function expressing the properties that the back electromotive force is derived from the time derivative of the magnetic flux. Through these two feedback loops, information about the gap length can be represented by the magnetic flux and the coil current. This means that the gap length can be detected from these two states variables of the electromagnet without a displacements sensor(self-sensing). The displacement can be estimated with the magnetic flux subtracted by the coil current. In this paper we use a balance beam in order to deal with the displacement sensorless estimation of the magnetic bearing system. For the stable estimation of the gap displacements by using the method of self-sensing simple PD controller is used. We first show the mathematical model of the balance beam, and then we show the effectiveness of the current and flux feedback for making stable estimation of the gap displacements for the balance beam. Simulation results show the effectiveness of the current and flux feedback for good estimation of the displacement without using displacement sensor.

  • PDF

A Study on the Sensorless Realization of Magnetic Levitation System by Two-Degree-of-freedom Control Method (2자유도 제어기법에 의한 자기 부상계의 센서리스 실현에 관한 연구)

  • 양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.888-893
    • /
    • 1998
  • In this paper, we present a magnetic levitation system which has not a gap sensor with sensor-less realization and stabilizing controller design. For measuring gap between magnet and levitated object we propose a gap sensorless method and adop two-degree-of-freedom controller for robust-ness and performence of the magnetic levitation system. From time responeses we confirm that the proposed sensorless method which can be applied to magnetic levitation system. Also the designed stabilizing controller has good disturbance rejection and reference tracking performance.

  • PDF

In-Process Measurement of ELID Grinding Status -Thickness of Insulating layer-

  • Ahn, Jung-Hwan;Kim, Hwa-Young;Seo, Young-Ho;Paik, In-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1268-1273
    • /
    • 2001
  • To successfully establish the ELID-grinding, it is important to properly select the electrolytic condition according to grinding conditions. Currently, the selection of electrolytic condition is mainly dependent on the operators experience, which is one of difficulties preventing the successful application of ELID technique. In this study, an in-process measurement system of the insulating layer using two gap sensors-a capacitance type and an eddy current type-are developed and the change of the thickness of insulating layer during ELID grinding is detected. Evaluation experiments show the possibility to control the electrolytic condition through the in-process measurement of the layer status.

  • PDF

A study on gap treatment in EMS type Maglev (상전도 흡입식 자기부상열차에서 공극처리방식에 대한연구)

  • Sung, Ho-Kyung;Jho, Jeong-Min;Lee, Jong-Moo;Kim, Dong-Sung
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.189-197
    • /
    • 2006
  • Maglev using EMS becomes unstable by unexpected big air-gap disturbance. The main causes of the unexpected air-gap disturbance are step-wise rail joint and large distance between rail splices. For the stable operation of the Maglev, the conventional system uses the threshold method, which selects one gap sensor among two gap sensors installed on the magnet to read the gap between magnet and guide rail. But the threshold method with a wide bandwidth makes the discontinuous air-gap signal at the rail joints because of the offset in air gap sensors and/or the step-wise rail joins. Further more, in the case of the one with a narrow bend-width, it makes Maglev system unstable because of frequent alternation. In this paper, a new method using fuzzy rule to reduce air-gap disturbances proposed to improve the stability of Maglev system. It treats the air-gap signal from dual gap sensors effectively to make continuous signal without air gap disturbance. Simulation and experiment results proved that the proposed scheme was effective to reduce air-gap disturbance from dual gap sensors in rail joints.

  • PDF

Air-Gap Signal Treatment based Fuzzy Rule in Rail-Joint (Rail-Joint에서 퍼지룰을 기반으로하는 공극신호처리법)

  • Sung, H.K.;Jho, J.M.;Lee, J.M.;Bae, D.K.;Kim, B.S.;Shin, B.C.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1071-1072
    • /
    • 2006
  • Maglev using EMS becomes unstable by unexpected big air-gap disturbance. The main causes of the unexpected air-gap disturbance are step-wise rail joint and large distance between rail splices. For the stable operation of the Maglev, the conventional system uses the threshold method, which selects one gap sensor among two gap sensors installed on the magnet to read the gap between magnet and guide rail. But the threshold method with a wide bandwidth makes the discontinuous air-gap signal at the rail joints because of the offset in air gap sensors and/or the step-wise rail joins. Further more, in the case of the one with a narrow bend-width, it makes Maglev system unstable because of frequent alternation. In this paper, a new method using fuzzy rule to reduce air-gap disturbances proposed to improve the stability of Maglev system. It treats the air-gap signal from dual gap sensors effectively to make continuous signal without air gap disturbance. Simulation and experiment results proved that the proposed scheme was effective to reduce air-gap disturbance from dual gap sensors in rail joints.

  • PDF