• Title/Summary/Keyword: gap distance

Search Result 582, Processing Time 0.03 seconds

Effects of Nanopowder Additives in Micro-electrical Discharge Machining

  • Tan, Peng-Cheong;Yeo, Swee-Hock;Tan, Yie-Voon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.22-26
    • /
    • 2008
  • The use of electrical discharge machining (EDM) for micro-machining applications requires particular attention to the machined surface roughness and discharge gap distance, as these factors affect the geometrical accuracy of micro-parts. Previous studies of conventional EDM have shown that selected types of semi-conductive and non-conductive powder suspended in the dielectric reduced the surface roughness while ensuring a limited increase in the gap distance. Based on this, an extension of the technique to micro-EDM was studied Such work is necessary since the introduction of nanopowders suspended in the dielectric is not well understood. The experimental results showed that a statistically significant reduction in the surface roughness value was achieved at particular concentrations of the powder additives, depending on the powder material and the machining input energy setting. The average reduction in surface roughness using a powder suspended dielectric was between 14-24% of the average surface roughness generated using a pure dielectric. Furthermore, when these additive concentrations were used for machining, no adverse increase in the gap distance was observed.

Flashover Characteristics of Air in the Arrangement of Cylinder-Shaped Rod and Plane Electrode in Case of Flame on the Plane Electrode (평단봉대평판 전극배치에서 평판 전극에 화염이 존재할 때 공기의 섬락전압 특성)

  • Kim, In-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.82-87
    • /
    • 2012
  • In this paper, flashover characteristics of air in the vertical arrangement of cylinder-shaped rod and plane gap in the case of combustion flame on the plane electrode were examined under the application of a.c. and d.c. high-voltages. In order to investigate the effect of propane flame on the flashover characteristics of air, flashover voltages in accordance with the variation of the gap length and the horizontal distance between the flame and the high-voltage rod electrode were measured. As the result of the experiment, flashover voltages in the presence of the flame were substantially lowered than those in the absence of flame, and the polarity effects with the d.c. voltages on appeared owing to the flame. Flashover voltages of air were increased in the proportion of the gap length and the horizontal distance in the case of both a.c. and d.c. voltages, but the flame was extinguished by such corona wind that was produced from the rod electrode when the gap length and the horizontal distance reached to a certain degree.

Fabrication of Electrostatically Actuated Nano Tweezers Using FIB(Focused Ion Beam) (집속이온빔 장치를 이용한 정전기 구동 나노트위저의 제작)

  • Chang Ji-Young;Kim Jong-Baeg;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.495-496
    • /
    • 2006
  • Electrostatically actuated nanoscale tweezers are fabricated on micro processed electrodes using FIB-CVD. Heavily doped electrode works as interconnection platform for controlling nanoscale devices. Short bent pillars are deposited to control the gap distance of main tweezers fabricated on bent ones. Two types of tweezers which have different gap distances are fabricated and tweezing motion was successfully demonstrated. The threshold voltages at snap-down of the pillars are dependent on the initial gap distance of the unactuated pillars, and the measured values were 93V for 3.6um and 30V for 2.2um. The dimension of nano tweezers and initial gap distances are controllable as demonstrated and we expect more complicated 3-dimensional shapes are also possible.

  • PDF

Design and fabrication of millimeter-wave GaAs Gunn diodes (밀리미터파 GaAs 건 다이오드의 설계 및 제작)

  • Kim, Mi-Ra;Lee, Seong-Dae;Chae, Yeon-Sik;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.45-51
    • /
    • 2007
  • We designed and fabricated the planar graded-gap injector GaAs Gm diodes with $1.6{\mu}m$ active length for operation at 94 GHz. The fabrication of the Gunn diode is based on MESA etching, Ohmic metalization, and overlay metalization. The measured negative resistance characteristics of the graded-gap injector GaAs Gunn diodes are examined for two different device structures changing the distance between the cathode and the anode electrodes. Also, we discuss the DC results under the forward and the reverse biases concerning the role of the graded-gap injector. It is shown that the structure having the shorter distance between the cathode and the anode electrode has higher peak current, higher breakdown voltage, and lower threshold voltage than those of the larger distance.

Measurement Feasibility Assessment of Coating Film Thickness using Dual Sensor (이중센서를 이용한 코팅막 두께 측정 가능성 평가)

  • 김주현;김성렬;김정욱;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.78-81
    • /
    • 2004
  • A technical performance of the coating depends greatly on the thickness of painting film or coating film. Therefore the confirmed report of the technique to measure accurately is essential to the coating film thickness for the assessment about a coating quality performance. In this paper, two gap sensors - eddy current gap sensor and capacitance gap sensor - which has a different operating principle were used to measure the thickness of a nonmagnetic substance coating film such as paint, enamel or ceramic that was coated on the metallic material. A capacitance gap sensor was used to measure the distance between the sensor head and a coating film and an eddy current gap sensor to measure the distance between the sensor head and a base metal. Then the thickness of a coating film was obtained by the difference of two measurement value. At this result, the suggested dual sensor can measure an arbitrary film thickness to be coated on a base metal as the measurement value of coating thickness exists accurately within the 2% error.

  • PDF

Effect of soldering techniques and gapdistance on tensile strength of soldered Ni-Cr alloy joint

  • Lee, Sang-Yeob;Lee, Jong-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.4
    • /
    • pp.117-121
    • /
    • 2010
  • PURPOSE. The present study was intended to evaluate the effect of soldering techniques with infrared ray and gas torch under different gap distances (0.3 mm and 0.5 mm) on the tensile strength and surface porosity formation in Ni-Cr base metal alloy. MATERIALS AND METHODS. Thirty five dumbbell shaped Ni-Cr alloy specimens were prepared and assigned to 5 groups according to the soldering method and the gap distance. For the soldering methods, gas torch (G group) and infrared ray (IR group) were compared and each group was subdivided by corresponding gap distance (0.3 mm: G3 and IR3, 0.5 mm: G5, IR5). Specimens of the experimental groups were sectioned in the middle with a diamond disk and embedded in solder blocks according to the predetermined distance. As a control group, 7 specimens were prepared without sectioning or soldering. After the soldering procedure, a tensile strength test was performed using universal testing machine at a crosshead speed 1 mm/min. The proportions of porosity on the fractured surface were calculated on the images acquired through the scanning electronic microscope. RESULTS. Every specimen of G3, G5, IR3 and IR5 was fractured on the solder joint area. However, there was no significant difference between the test groups (P > .05). There was a negative correlation between porosity formation and tensile strength in all the specimens in the test groups (P < .05). CONCLUSION. There was no significant difference in ultimate tensile strength of joints and porosity formations between the gas-oxygen torch soldering and infrared ray soldering technique or between the gap distance of 0.3 mm and 0.5 mm.

Flow Characteristics with Distance between Solid Propellant Grain and Igniter (고체 추진제와 점화기 간 간격에 따른 유동 특성)

  • Kang, Donggi;Choi, Jaesung;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.96-107
    • /
    • 2018
  • Flow analysis using computational fluid dynamics was conducted to investigate the effect of the igniter flame caused by the gap between the igniter and the propellant grain in a solid rocket motor. Two propellant grain types were assumed; namely cylinder type (1 mm, 3 mm, and 5 mm gap) and the slot type. The slot type had two igniter hole locations. One was located at the small gap of the propellant grain, and the other one was located at the large gap. In the case of the cylinder type, the pressure in the igniter zone was higher with a thinner gap. Additionally, in the case of the cylinder type, the pressure difference between the igniter installed zone and the free volume was also higher as the gap became lower. The cylinder types were affected by the gap distance, but the slot types were not. Moreover, the results of the slot types were similar to the 5-mm gap case of the cylinder type.

An Assessment of the Radiation Dose from Radiography with the Change in Air Gap (공극(기극(氣隙)) 변화에 따른 방사선촬영 선량평가)

  • Ahn, Byeong Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.381-385
    • /
    • 2016
  • This study aims to propose a method for reducing radiation dose in high-voltage radiography using air gap technique while maintaining the same image quality as when using grids. For an experiment, air gaps were set at 10 cm, 15 cm, 20 cm, 25 cm, and 30 cm with a focus-receptor distance of 180 cm; with each air gap distance, tube current was set at 15 mAs, and tube voltage was set at 80 kVp, 85 kVp, 90 kVp, 95 kVp and 100 kVp. Then, radiographs were taken. In a situation of employing a conventional method of using grids, radiographs were taken at 15 mAs and 107 kVp with a focus-receptor distance of 180 cm. According to the results of the experiment, the surface radiation dose from radiography using grids was 0.130 R; the surface radiation dose at a 20cm air gap was 0.124 R; PSNR between these two images was 10.65 [dB]. In conclusion, the air gap distance, which could maintain the image quality similar to that of a case where scattered radiation was removed and grids were used with a small surface radiation dose, was 20 cm. The result of this study is thought to be used as an indicator to remove surface radiation dose in radiography using air gap.

Effect of the Sensor Location on Magnetocardiography (심자도 센서의 위치 효과에 대한 연구)

  • Lim, Hyun-Kyoon;Kim, Ki-Woong;Kwon, Hyuk-Chan;Lee, Yong-Ho
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Magnetocardiography (MCG) is a non-contact, non-invasive, and harmless diagnostic tool to detect the abnormal electrical conductivities of the heart caused by the various coronary artery disease or cardiac muscular disease. The purpose of this study is to identify whether MCG signals and MCG parameter values vary depending on the location of sensor assembly. It will be an important reference for the standard measurement. Four healthy male subjects (33.3$\pm$6.3 years) participated in this study. Basal recording was made at 20 mm apart from the chest surface. All subjects were requested to take a regular breathe while MCG was taken. The gap between the chest surface and the bottom of the sensor assembly was 20, 40, 60, and 80 mm. Recording was made using 64 channel MCG system (Axial type, first order gradiometer) developed by Korea Research Institute of Standards and Science (KRISS). After resting for two minutes in a supine position on the bed in magnetically shielded room, MCG were recorded for 30 s. As the sensor location is getting away from the chest surface signal, the amplitude of R and T wave peak decreases to 70% (at 40 mm gap), 50% (at 60 mm), and 37% (at 80 mm) of the reference strength measured (y = $1.3903e^{-0.0169x}$, $R^2$ = 0.99; where y=amplitude remained after reduction, x=distance between chest surface and sensor location). The regression equations may be used as a good reference to calculate how much strength will be decreased by the distance. In MCG parameters, most values of parameters were decreased as the gap was increased. As an example, the current moment at T-wave peak reduced to 52% (at 40 mm gap), 33% (at 60 mm), and 19% (at 80 mm). However, the difference caused by the gap could be reduced by considering the distance when the MCG parameters were calculated. The study results can be used as a useful reference to design the baseline and the sensor location.

  • PDF

An Electric Field analysis of a Vacuum Interrupter by 3 Dimensional Finite Element Method (3차원 유한요소법에 의한 진공 인터럽터의 전계해석)

  • Choi, Seung-Kil;Shim, Jae-Hak;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.913-915
    • /
    • 1998
  • This paper describes the application of two and three dimensional electric field analysis for vacuum interrupter with spiral contacts. The electric potentials of floating arc shield and electric fields in a vacuum interrupter are analysed at various gap distances from 1mm to 12mm. The electric potentials of floating shield is increased with the gap distance, which is because the relative position of shield is closer to the fixed contact so that the capacitance distribution inside interrupter is varied. The calculated results show that the maximum value of electric field in a vacuum interrupter with floating shield is nearly same to that without shield at short gap distance below 5mm, however at longer gaps more intensive electric field is achieved in interrupter with shield comparing with the model without shield, which is due to the influence of charged floating shield.

  • PDF