• Title/Summary/Keyword: ganglion cell

Search Result 195, Processing Time 0.028 seconds

Neuroanatomical Studies on the Acupoints Related to the Large Intestine (대장(大腸)과 관련(關聯)된 경혈(經穴)들의 신경해부학적(神經解剖學的) 연구(硏究))

  • Kang, Chang-Soo;Lee, sang-ryoung;Lee, Chang-Hyun;Nam, Yong-Jae;Lee, Kwang-Gyu
    • Journal of Acupuncture Research
    • /
    • v.17 no.2
    • /
    • pp.95-117
    • /
    • 2000
  • The purpose of this morphological studies was to investigate the relation between the meridian, acupoints and viscera using neuroanatomical tracers. The common locations of the spinal ganglia, sympathetic chain ganglia, spinal cord and brain projecting to the large intestine meridian were observed following injection of transganglionic tracer, WGA-HRP and transsynaptic neurotropic virus, pseudorabies virus(PRV), Bartha strain(Ba) and PRV-Ba-Gal (Galactosidase)) into the the large intestine(cecum, colon and rectum), ST37 and LI4. After survival times of 96 hours following injection into the thirty rats with WGA-HRP, PRV-Ba and PRV-Ba-Gal. They were perfused, and their spinal ganglia, sympathetic chain ganglia, spinal cord and brain were frozen sectioned($30{\mu}m$). These sections were stained by HRP and X-gal histochemical and PRV immunohistochemical staining method, and observed with a light microscope. The results were as follows : 1. WGA-HRP labeled neurons innervating the large intestine were observed bilaterally within the T13-L4 sympathetic chain ganglia, and T9-11 spinal ganglia. WGA-HRP labeled neurons innervating ST37 were observed within the L3-5 sympathetic chain ganglia, and L2-4 spinal ganglia. WGA-HRP labeled neurons innervating LI4 were observed in the middle cervical ganglion and stellate ganglion, and C5-8 spinal ganglia. 2. In spinal cord, PRV-Ba labeled neurons projecting to the large intestine, ST37 and LI4 were found in thoracic, lumbar and sacral spinal segments. Densely labeled areas of each spinal cord segment were founded in lamina N, V, VII(intermediolateral nucleus), Ⅸ, X and dorsal nucleus. 3. In medulla oblongata, PRV-Ba and PRV-Ba-Gal labeled neurons projecting to the large intestine, ST37 and LI4 were commonly found in the A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nucleus, dorsal motor nucleus of vagus nerve, nucleus tractus solitarius, raphe obscurus nucleus, raphe pallidus nucleus, raphe magnus nucleus and gigantocellular nucleus. 4. In pons, PRV-Ba and PRV-Ba-Gal labeled neurons were commonly found in locus coeruleus, Kolliker-Fuse nucieus and A5 cell group. 5. In midbrain, PRV-Ba and PRV-Ba-Gal labeled neurons were commonly found in central gray matter. 6. In diencephalon, PRV-Ba and PRV-Ba-Gal labeled neurons were commonly found in paraventricular hypothalamic nucleus. These results suggest that PRV-Ba and PRV-Ba-Gal labeled common areas projecting to the large intestine may be correlated to that of the large intestine meridian, ST37 and LI4. Especially, These morphological results provide that interrelationship of meridian-acupoints -viscera may be related to the central autonomic pathways.

  • PDF

Transplantation of Marrow Stromal Cells into the Developing Mammal Retina (발생 중인 포유류 망막으로 골수기질세포의 이식)

  • Lee, Eun-Shil;Kwon, Oh-Ju;Ye, Eun-Ah;Jeon, Chang-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.541-548
    • /
    • 2013
  • Purpose: Marrow stromal cells (MSCs) have been known for their potential to trans-differentiate into neural and glial cells in vitro and in vivo. To investigate the influence of the developing host environment on the survival and morphological and molecular differentiation, murine MSCs transplanted into the eye of Brazilian opossum (Monodelphis domestica). Methods: Enhanced green fluorescent protein (GFP) - expressing MSCs were transplanted into developing Brazilian opossums. Animals were allowed to survive for up to 4 weeks after transplantation, at which time the eyes were prepared for immunohistochemical analysis. Results: Some transplanted MSCs survived and showed morphological differentiation into neural cells with some processes within the host vitreous chamber. Some transplanted cells expressed class III ${\beta}$-tubulin (TuJ1, a marker for neuronal cells) or glial fibrillary acid protein (GFAP, a marker for glial cells) or Nestin (a marker for neural stem cells). In addition, some transplanted cells were located in ganglion cell layer but did not show morphological and molecular differentiation. Conclusions: Our result show that the most effective stage of development for transplantation into the retina was postnatal day 16, which retinas developmentally corresponded to postnatal day 4-5 days mouse retina based on cell differentiation and lamination patterns. The present findings suggest that the age of the host appears to play a key role in determining cell fate in vivo.

Localization of the Major Retinal Neurotransmitters and Receptors and Müller Glia in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) (한국관박쥐 망막의 신경전달물질 및 수용체, 뮬러세포 동정)

  • Lee, Jun-Seok;Kwon, Oh-Ju;Jeon, Tae-Heon;Jeon, Chang-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.391-396
    • /
    • 2015
  • Purpose: The objective of this study was to investigate the visual system of the greater horseshoe bat (Rhinolophus ferrumequinum) by location analysis of some major neurotransmitters glutamate, ${\gamma}$-aminobutyric acid (GABA), acetylcholine, and their receptors, and $m{\ddot{u}}ller$ glial cells in retina. Methods: Standard immunocytochemical techniques were used after vibratome section of retinal tissues of adult greater horseshoe bat for this study. Immnoreactions in immunofluorescence images were analyzed using confocal microscope. Results: Anti-glutamate-immunoreactive neurons were mainly localized in the ganglion cell layer (GCL). The majority of anti-GABA-immunoreactive cells distributed in the inner nuclear layer (INL), and GABAA receptors were localized in the inner plexiform layer (IPL). Anti-choline acetyltransferase-immuoreactive cholinergic neurons were mainly located in the INL and GCL, and most of nicotinic acetylcholine receptors were localized in the IPL. The $m{\ddot{u}}ller$ cells in the retina of the greater horseshoe bat stretched theirs range from the GCL to outer nuclear layer (ONL). Conclusions: This study revealed that the retinas of the greater horseshoe bats contain the same major neurotransmitters and receptors, and glial cell in visually functional mammalian retinas. The present results may suggest that the greater horseshoe bats have the functional retinas for visual analysis through the organized retinal neural circuits.

Glial Cell Line-Derived Neurotrophic Factor, S-100 Protein and Synaptophysin Expression in Biliary Atresia Gallbladder Tissue

  • Gurunluoglu, Semra;Ceran, Canan;Gurunluoglu, Kubilay;Kocbiyik, Alper;Gul, Mehmet;Yildiz, Turan;Bag, Harika Gozukara;Gul, Semir;Tasci, Aytac;Bayrakci, Ercan;Akpinar, Necmettin;Cin, Ecem Serbest;Ates, Hasan;Demircan, Mehmet
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.2
    • /
    • pp.173-186
    • /
    • 2021
  • Purpose: Biliary atresia (BA) is a disease that manifests as jaundice after birth and leads to progressive destruction of the ductal system in the liver. The aim of this study was to investigate histopathological changes and immunohistochemically examine the expression of glial cell line-derived neurotrophic factor (GDNF), synaptophysin, and S-100 protein in the gallbladder of BA patients. Methods: The study included a BA group of 29 patients and a control group of 41 children with cholecystectomy. Gallbladder tissue removed during surgery was obtained and examined immunohistochemically and histopathologically. Tissue samples of both groups were immunohistochemically assessed in terms of GDNF, S-100 protein, and synaptophysin expression. Expression was classified as present or absent. Inflammatory activity assessment with hematoxylin and eosin staining and fibrosis assessment with Masson's trichrome staining were performed for tissue sample sections of both groups. Results: Ganglion cells were not present in gallbladder tissue samples of the BA group. Immunohistochemically, GDNF, synaptophysin, and S-100 expression was not detected in the BA group. Histopathological examination revealed more frequent fibrosis and slightly higher inflammatory activity in the BA than in the control group. Conclusion: We speculate that GDNF expression will no longer continue in this region, when the damage caused by inflammation of the extrahepatic bile ducts reaches a critical threshold. The study's findings may represent a missing link in the chain of events forming the etiology of BA and may be helpful in its diagnosis.

Comparative Analysis of Histological Changes in Ussurian Bullhead, Leiocassis ussuriensis, and Korean Bullhead, Pseudobagrus fulvidraco, in the Early Period of Growth

  • In Bon, Goo;Hyun Woo, Gil;In-Seok, Park
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.427-434
    • /
    • 2013
  • The histological changes in the Ussurian bullhead, Leiocassis ussuriensis, and the Korean bullhead, Pseudobagrus fulvidraco, were observed during the early period of growth. The retinas size of both species increased in the 9 days post-hatching (DPH) (p<0.05). In the just-hatched Ussurian bullhead, the retina already consisted of six layers: the epithelial layer, ganglion cell layer, inner nuclear layer, inner plexiform layer, outer limiting membrane layer, and rod and cone layer. The Korean bullhead had the same components. At 50 DPH, the thickness of the retina was $538.0{\pm}7.19{\mu}m$ in the Ussurian bullhead and $558.9{\pm}9.44{\mu}m$ in the Korean bullhead. The relative thickness of each layer of the retina did not differ significantly in the two species. Although the growth of the Korean bullhead's retina was faster, the relative thickness of each layer in the retina did not change during early development. After hatching, some parts of the tissue gradually became denser. Immediately after hatching, the kidney and midgut epithelium of the Ussurian bullhead and Korean bullhead were already formed and grew gradually thereafter. From 0 DPH to 30 DPH, the nuclear height in the midgut epithelium did not differ significantly between the two species, but at 50 DPH, it was $11.4{\pm}2.45{\mu}m$ in the Korean bullhead and $9.9{\pm}2.13{\mu}m$ in the Ussurian bullhead. During the experimental period, the major axes, minor axes, surface areas, and volumes of the proximal tubule cells in the kidney did not differ significantly between the two species. Thus, the early histological development of the Ussurian bullhead is similar to that of the Korean bullhead.

Antidromic Electrically Compound Action Potential in Cochlear Implantees (인공와우 이식자의 역행성 청신경 복합활동전위)

  • Heo, Seung-Deok;Jung, Sung-Wook;Jung, Seung-Hyun
    • Phonetics and Speech Sciences
    • /
    • v.1 no.4
    • /
    • pp.203-207
    • /
    • 2009
  • Electrically evoked compound action potentials (ECAP) have originated from the distal end of the auditory nerve. ECAP are characterized as the difference between the clearly large trough (N) and the following positive peak (P). N-wave occurs around $200-400\;{\mu}s$ after stimulus onset and P-wave at around $400-800\;{\mu}s$. Contrary to expectations, positive peaked ECAP (pp-ECAP) was dominated by a relatively large-amplitude positive following negative peak. pp-ECAP can be recorded from the sites on or near the surgically exposed nerve trunk in animal models and/or in cases of monophasic stimulation. This study will provide the causes of the appearance of pp-ECAP in cases of cochlear implant recipients using imaging studies and medical records and statistically analysis between N-P and P-N on the amplitude input-output function (amp-I/O) for the prediction of the possibilities of clinical tools. Thirteen children participated in the study and received a Cochlear CI-24RE (CA). ECAP was recorded using auto-NRT (Cochlear Ltd., Australia) at four to five weeks post surgery. pp-ECAP was measured from 36 electrodes and typical ECAP from 220 electrodes. There was no abnormality in the imaging study and operation finding in patients with typical ECAP. pp-ECAP was found at the inner ear anormaly and ossification in imaging study and gel-state inner ear fluid was observed in the operation finding. The amplitude of pp-ECAP increased depending on current intensities, but amp-I/O increase more gradually than in the case of typical ECAP (p=0.003). pp-ECAP is antidromic potential which can record from the inner ear anormaly and ossified cochlear. Amp-I/O also depends on current intensity as well typical ECAP. These results provide a useful tool for audiological evaluation for the spiral ganglion cell status to the value of pp-ECAP.

  • PDF

Ultrastructural Study on the Development of the Carotid Body in Human Fetus (인태아(人胎兒) 경동맥체(頸動脈體)의 발육(發育)에 관(關)한 전자현미경적(電子顯微鏡的) 연구(硏究))

  • Yoon, Jae-Rhyong;Park, Byoung-Sun;Kim, Baik-Yoon
    • Applied Microscopy
    • /
    • v.24 no.1
    • /
    • pp.11-27
    • /
    • 1994
  • The morphological development of the carotid body was studied by electron microscope in human fetuses from 40mm to 260mm crown rump length (10-30 weeks of gestational age). At 40mm fetus, the carotid body was composed of cluster of primitive glomus cells, primitive supporting cells, unmyelinated nerve fibers, and blood capillaries. In connective tissue between internal and external carotid arteries adjacent to the superior cervical sympathetic ganglion, two types of glomus cells through all prenatal period were found. Dark cells contained a dense cytoplasm with conspicuous large dense-cored granules, whereas light cells had a less dense cytoplasm with dense-cored granules. The light cells contained dense-cored granules that were smaller and less abundant than those in the dark cells. The primitive supporting cells appeared star-shaped with attenuated cytoplasmic extensions intervening between the adjacent glomus cells. Synaptic contact between the axon terminals and soma of the glomus cells were first observed at 40mm fetus. In 80-100mm fetus, the carotid body contained tightly packed collection of glomus cells and supporting cells which surrounded the abundant thin-walled blood vessels. Intercellular junctions between the glomus cells and adjacent cells were commonly seen. Nerve endings on the glomus cells have the form of small boutons and the other from of large calyces. During the second half of the fetal period, the glomus cells were completely enveloped by supporting cells and nerve terminals. At 260mm, the morphological features of carotid body were similar to those of human adult. The result of this study demonstrates that there are differences between the carotid body and aorticopulmonary bodies, especially with respect to their synaptic complexes, abundant blood capillaries, and two glomus cell types.

  • PDF

Facilitated Axonal Regeneration of Injured Sciatic Nerves by Yukmijihwang-tang Treatment

  • Kim, Jung-Hyun;Seol, In-Chan;Ryu, Ho-Ryong;Jo, Hyun-Kyung;An, Joung-Jo;Namgung, Uk;Kim, Yoon-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.896-902
    • /
    • 2008
  • Yukmijihwang-tang(YM) is used in Oriental medicine for treatments of diverse systemic symptoms including neurological dosorders. The present study was performed to examine potential effects of YM on growth-promoting activity of injured sciatic nerve axons. YM treatment in the injured sciatic nerve induced enhanced distal elongation of injured axons when measured 3 and 7 days after injury. Retrograde tracing of sciatic nerve axons showed YM-mediated increases in the number of DiI-labeled dorsal root ganglion (DRG) sensory neurons and spinal cord motor neurons at 3 days after injury. Hoechst nuclear staining showed that non-neuronal cell population was largely elevated by YM treatment in distal nerve area undergoing axonal regeneration. Furthermore, phospho-Erk1/2 protein levels were upregulated by YM treatment in the injured nerve area. These data suggest that YM may play a role in facilitated axonal regeneration in injured peripheral nerves. Further investigations of individual herbal components would be useful to explore effective molecular components and develop therapeutic strategies.

Effect of carbamazepine on tetrodotoxin-resistant Na+ channels in trigeminal ganglion neurons innervating to the dura

  • Han, Jin-Eon;Cho, Jin-Hwa;Nakamura, Michiko;Lee, Maan-Gee;Jang, Il-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.649-660
    • /
    • 2018
  • Migraine is a neurological disorder characterized by recurrent and disabling severe headaches. Although several anticonvulsant drugs that block voltagedependent $Na^+$ channels are widely used for migraine, far less is known about the therapeutic actions of carbamazepine on migraine. In the present study, therefore, we characterized the effects of carbamazepine on tetrodotoxin-resistant (TTX-R) $Na^+$ channels in acutely isolated rat dural afferent neurons, which were identified by the fluorescent dye DiI. The TTX-R $Na^+$ currents were measured in medium-sized DiIpositive neurons using the whole-cell patch clamp technique in the voltage-clamp mode. While carbamazepine had little effect on the peak amplitude of transient $Na^+$ currents, it strongly inhibited steady-state currents of transient as well as persistent $Na^+$ currents in a concentration-dependent manner. Carbamazepine had only minor effects on the voltage-activation relationship, the voltage-inactivation relationship, and the use-dependent inhibition of TTX-R $Na^+$ channels. However, carbamazepine changed the inactivation kinetics of TTX-R $Na^+$ channels, significantly accelerating the development of inactivation and delaying the recovery from inactivation. In the current-clamp mode, carbamazepine decreased the number of action potentials without changing the action potential threshold. Given that the sensitization of dural afferent neurons by inflammatory mediators triggers acute migraine headaches and that inflammatory mediators potentiate TTX-R $Na^+$ currents, the present results suggest that carbamazepine may be useful for the treatment of migraine headaches.

Distribution of Glutamate Receptors in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) (한국관박쥐 망막에서 글루타메이트 수용체의 분포 양상)

  • Kwon, Oh-Ju;Jeon, Chang-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.3
    • /
    • pp.413-418
    • /
    • 2014
  • Purpose: The objective of this study was analyzing the distribution of the excitatory neurotransmitter glutamate receptor to investigate the function in the retina of the greater horseshoe bat. Methods: After retinal tissues of adult greater horseshoe bat were cut into $40{\mu}m$ vertical sections, standard immuno-cytochemical techniques was applied for analysis. Immunofluorescence images were obtained using the Bio-Rad MRC 1024 laser scanning confocal microscope. Results: AMPA (GluR1-4), Kainate (GluR5-7, KA1-2) and NMDA (1, 2A, 2B) mainly distributed in the inner plexiform layer and outer plexiform layer. KA1 receptors have existed not only plexiform layer but also ganglion cell layer. Conclusions: The greater horseshoe bat has same neuron and neurotransmitter to mammalian retina. These findings suggest that bat has a functional retina for visual analysis.